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Abstract

We introduce an iterative approach to
subgraph-based Word Sense Disambigua-
tion (WSD). Inspired by the Sudoku puz-
zle, it significantly improves the precision
and recall of disambiguation. We describe
how conventional subgraph-based WSD
treats the two steps of (1) subgraph con-
struction and (2) disambiguation via graph
centrality measures as ordered and atomic.
Consequently, researchers tend to focus on
improving either of these two steps indi-
vidually, overlooking the fact that these
steps can complement each other if they
are allowed to interact in an iterative man-
ner. We tested our iterative approach
against the conventional approach for a
range of well-known graph centrality mea-
sures and subgraph types, at the sentence
and document level. The results demon-
strated that an average performing WSD
system which embraces the iterative ap-
proach, can easily compete with state-of-
the-art. This alone warrants further inves-
tigation.

1 Introduction

Explicit WSD is a two-step process of analysing a
word’s contextual use then deducing its intended
sense. When Kilgarriff (1998) established SEN-
SEVAL, the collaborative framework and forum to
evaluate WSD, unsupervised systems performed
poorly in comparison to their supervised counter-
parts (Palmer et al., 2001; Snyder and Palmer,
2004). A review of the literature shows there
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has been a healthy rivalry between the two, in
which proponents of unsupervised WSD have long
sought to vindicate its potential since two decades
ago (Yarowsky, 1995) to even more recent times
(Ponzetto and Navigli, 2010).

As Pedersen (2007) rightly states, supervised
systems are bound by their training data, and
therefore are limited in portability and flexibility
in the face of new domains, changing applications,
or different languages. This knowledge acquisi-
tion bottleneck, coined by Gale et al. (1992), can
be alleviated by unsupervised systems that exploit
the portability and flexibility of Lexical Knowl-
edge Bases (LKBs). As of 2007, SENSEVAL be-
came SEMEVAL, offering a more diverse range of
semantic tasks. Unsupervised knowledge-based
WSD has since had its performance evaluated in
terms of granularity (Navigli et al., 2007), domain
(Agirre et al., 2010), and cross/multi-linguality
(Lefever and Hoste, 2010; Lefever and Hoste,
2013; Navigli et al., 2013). Results from these
tasks have demonstrated unsupervised systems are
now a competitive and robust alternative to super-
vised systems, especially given the ever changing
task-orientated settings WSD is evaluated in.

One such class of unsupervised knowledge-
based WSD systems that we seek to improve
in this paper constructs semantic subgraphs from
LKBs, and then runs graph-based centrality mea-
sures such as PageRank (Brin and Page, 1998)
over them to finally select the senses (as nodes)
ranked as the most relevant. This class is known
as subgraph-based WSD, characterised over the
last decade by performing the two key steps of (1)
subgraph construction and (2) disambiguation via
graph centrality measures, in an ordered atomic
sequence. We refer to this characteristic as the
conventional approach to subgraph-based WSD.
We propose an iterative approach to subgraph-
based WSD that allows for interaction between
the two major steps in an incremental manner



and demonstrate its effectiveness across a range
of graph-based centrality measures and subgraph
construction methods at the sentence and docu-
ment levels of disambiguation.

2 The Conventional Subgraph Approach

The conventional approach to subgraph WSD
firstly benefits from some preprocessing, in which
words in a sequenceW , are mapped to their lem-
matisations1 in a set L, such that (w1, ..., wm) 7→
{`1, ..., `m}. This facilitates better lexical align-
ment with the LKB to be exploited. Let this LKB
be a large semantic graph G = (S, E), such that
S is a set of vertices representing all known word
senses, and E be a set of edges defining seman-
tic relationships that exist between senses. Now
given we wish to disambiguate `i ∈ L, let R(`i)
be a function that Retrieves from G, all the senses,
{si,1, si,2, ..., si,k}, that `i could refer to, noting
that i is an anchor to the original word wi.

2.1 Step 1: Subgraph Construction

For unsupervised subgraph-based WSD, the key
publications that have advanced the field broadly
construct subgraph, GL, as either a union of sub-
tree paths, shortest paths, or local edges2. First
we initialise GL, by setting SL :=

⋃n
i=1R(`i) and

EL := ∅. Next we add edges to EL, depending on
the desired subgraph type, by adding either the:

(a) Subtree paths of up to length L, via a Depth-
First Search (DFS) of G. In brief, for each
sense sa ∈ SL, if a new sense sb ∈ SL,
i.e. sb 6= sa, is encountered along a path
Pa→b = {{sa, s}, ..., {s′, sb}} with path-
length |Pa→b| ≤ L, then add Pa→b to GL.
[cf. Navigli and Velardi (2005), Navigli and
Lapata (2007), or Navigli and Lapata (2010)]

(b) Shortest paths, via a Breadth-First Search
(BFS) of G. In brief, for each sense pair
sa, sb ∈ SL, find the shortest path Pa→b =
{{sa, s}, ..., {s′, sb}}; if such a path Pa→b ex-
ists and (optionally) |Pa→b| ≤ L, then add
Pa→b to GL [cf. Agirre and Soroa (2008),
Agirre and Soroa (2009), or Gutiérrez et al.
(2013)]

1For a detailed explanation of the processes leading up to
lemmatisation (and beyond), see Navigli (2009, p12)

2‘Local’ describes the local context, typically this is the 2
or 3 words either side of a word, see Yarowsky (1993)

(c) Local edges up to a local distance D. In brief,
for each sense pair sa, sb ∈ SL, if the distance
in the text |b − a| between the corresponding
words wa and wb satisfies |b − a| ≤ D, then
add edge {sa, sb} to GL (preferably with edge-
weights). [cf. Mihalcea (2005) or Sinha and
Mihalcea (2007)] (Note that this subgraph is a
hybrid, because only its vertices belong to G)

In practice, subgraph edges may be directed,
weighted, collapsed, or filtered. However to keep
the distinctions between subgraph types simple,
we do not include this in our formalisation.

2.2 Step 2: Disambiguation

To disambiguate each lemma `i ∈ L, its cor-
responding senses, R(`i) = {si,1, si,2, ..., si,k},
are scored by a graph-based centrality measure φ,
over subgraph GL, to estimate the most appropri-
ate sense, ŝi,∗ = arg maxsi,j∈R(`i) φ(si,j). The
estimated sense ŝi,∗ is then assigned to word wi.

2.3 Algorithm for Conventional Approach

With both steps formalised, we can now illus-
trate the conventional subgraph approach in Algo-
rithm 1. Let L be taken as input, and let the disam-
biguation resultsD = {ŝ1,∗, ..., ŝm,∗} be produced
as output to assign toW = (w1, ..., wm).

Algorithm 1: Conventional Approach
Input: L
Output: D
D ← ∅;
GL ← ConstructSubGraph (L);
foreach `i ∈ L do

ŝi,∗ ← arg maxsi,j∈R(`i) φ(si,j);
put ŝi,∗ in D;

To begin with, D is initialised as an empty set
and ConstructSubGraph(L) constructs one
of the three subgraphs described in section 2.1.
Next for each `i ∈ L, by running a graph based
centrality measure φ over GL, the most appropriate
sense ŝi,∗ is estimated, and placed in set D. Effec-
tively, L is a context window based on document
or sentence size, therefore this algorithm is run
for each context window division. Note that Al-
gorithm 1 would require a little extra complexity
to handle local edge subgraphs, due to its context
window needing to satisfy L = {`i−D, ..., `i+D}.
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Figure 1: Iterative Solving of Sudoku Grids

3 The Iterative Subgraph Approach

3.1 What is Iterative WSD?

The key observation to make about the conven-
tional approach in Algorithm 1, is for input L,
constructing subgraph GL and performing disam-
biguation are two ordered atomic steps. Notice
that there is no iteration between them, because
the first step of subgraph construction is never re-
visited for each L. For the conventional process
to be iterative, then for `a, `b ∈ L a previous dis-
ambiguation of `a, would need to influence a con-
secutive disambiguation of `b, through an iterative
re-construction of GL between each disambigua-
tion. This key difference illustrated by Figure 2, is
the level of iterative WSD we aspire to.

L GL φ Dconstruct disambiguate assign

(a) Conventional Approach

L GL φ Dconstruct

disambiguate

assign

reconstruct

(b) Interactively Iterative Approach

Figure 2: The Key Difference In Approach

It is important to note, the term iterative can al-
ready be found in WSD literature, therefore we
take the opportunity here to make a distinction.
Firstly, a graph based centrality measure φ may
be iterative, such as PageRank (Brin and Page,
1998) or Hyperlink-Induced Topic Search (HITS)
(Kleinberg, 1999). In the experiments by Mihal-
cea (2005) in which PageRank was run over local
edge subgraphs (as described in 2.1 (c)), it is easy
to perceive the WSD process itself as iterative.

Iteration can again be taken further, as observed
with Personalised PageRank in which Agirre and
Soroa (2009) apply the idea of biasing values in
the random surfing vector, v, (see (Haveliwala,
2003)). For their run labelled “Ppr_w2w”, in or-
der to avoid senses anchored to the same lemma
assisting each other’s φ score, the random surfing
vector v is iteratively updated as `i changes, to en-
sure context senses sa,j ∈ v such that a 6= i are
the only senses that receive probability mass.

L GL φ Dconstruct disambiguate

update

assign

Figure 3: Atomically Iterative Approach

In summary, iteration in the literature either de-
scribes φ as being iterative or being iteratively ad-
justed, both of which are contained in the disam-
biguation step alone as shown in Figure 3. This is
iteration at the atomic level and should not be con-
flated with the interactive level of iteration that we
propose as seen in Figure 2 (b).

3.2 Iteratively Solving a Sudoku Grid

In Figures 1 (a), (b), and (c), we observe the solv-
ing of a Sudoku puzzle, in which the numbers
from 1 to 9 must be assigned only once to each
column, row, and 3x3 square. Each time a number
is assigned and the Sudoku grid is updated, this
is an iteration. For example, in the south west
square of grid (a) (i.e. Figure 1 (a)) unknown
cells can be assigned {1, 4, 7, 8}. Given that 1
has already been assigned to the 7th row and the
1st and 2nd columns, this singles it down to one
cell it can be assigned to. The iteration of grid



• m b1 •
• m • • •
a1 • a2

• • m •
• m • m

•
• •

m b2
• • •

(a) x2 Bi-semous Eliminations

• m b1 •
m • • •

• a2 •
• m c2

c1 • m • m

• • •
• • • •

m c3
• • • •

(b) x1 Tri-semous Elimination

• m b1 •
m • • •

• • • a2 •
d1 m c2

• • • m • m

• •
• • • • •
m d2 d3 •

• • • • d4

(c) (ρmax)-semous Completion

Figure 4: Iterative Disambiguating of Subgraphs

(a), now makes possible the iteration of grid (b) to
eliminate the number 8 as the only possibility for
its assigned cell. This iterative process continues
until we reach the completed puzzle in grid (c).
Therefore in WSD terminology, with each cell we
disambiguate, a new grid is constructed, in which
knowledge is passed on to each consecutive itera-
tion.

Continuing with this line of thought, each un-
solved cell is ambiguous, with a degree of pol-
ysemy ρ, such that ρmax ≤ 9. Again, the ini-
tial Sudoku grid has pre-solved cells, of which are
monosemous. This brings us to another key ob-
servation. Typically in Sudoku, it is necessary to
solve the least polysemous cells first, before you
can solve the more polysemous cells with a cer-
tainty. As the conventional approach exhibits no
Sudoku-like iteration, cells are solved without re-
gard to the ρ value of the cell, or any interactive
exploitation of previously solved cells.

3.3 Iteratively Constructing a Subgraph

In our ‘Sudoku style’ approach, we propose dis-
ambiguating each `i in order of increasing poly-
semy ρ, iteratively reconstructing subgraph GL to
reflect 1) previous disambiguations and 2) the ρ
value of lemmas being disambiguated in the cur-
rent iteration. This is illustrated in Figures 4 (a),
(b), and (c) above.

Let m-labelled vertices describe monosemous
lemmas. In graph (a) (i.e. Figure 4) we observe
two bi-semous lemmas, a and b, in which our ar-
bitrary graph-based centrality measure φ has se-
lected the second sense of a (i.e. a2) and the first
sense of b (i.e. b1) to be placed in D. For the next
iteration, you will notice the alternative senses for
a and b are removed from GL for the disambigua-
tion of tri-semous lemma c. The second sense of

lemma cmanages to be selected by φwith the help
of the previous disambiguation of lemma a. This
interactive and iterative process continues until we
reach the most polysemous lemma, which in our
example is d with ρmax = 4 in graph (c).

3.4 Algorithm for Iterative Approach
We can formally describe what is happening in
Figure 4 with Algorithm 2. Effectively, this is a
recreation of Algorithm 1, which highlights the
differences in the conventional and iterative ap-
proach.

Algorithm 2: Iterative Approach
Input: L
Output: D
D ← GetMonosemous (L);
A ← ∅;
for ρ← 2 to ρmax do
A ← AddPolysemous (L, ρ);
GL ← ConstructSubGraph (A,D);
foreach `i ∈ A do

ŝi,∗ ← arg maxsi,j∈R(`i) φ(si,j);
if ŝi,∗ exists then

remove `i from A;
put ŝi,∗ in D;

Firstly, as it reads GetMonosemous(L)
places all the senses of the monosemous lemmas
into the set of disambiguated lemmas D. This is
the equivalent of copying out an unsolved Sudoku
grid onto a piece of paper and adding in all the
initial hint numbers. Next the set A which holds
all ambiguous lemmas of polysemy ≤ ρ is ini-
tialised as an empty set. Now we are ready to
iterate through values of ρ, beginning from the
first iteration, by adding all bi-semous lemmas to



Awith the function AddPolysemous(L, ρ), no-
tice ρ places a restriction on the degree of poly-
semy a lemma `i ∈ L can have before being added
to A.

We are now ready to create the first subgraph GL
with function ConstructSubGraph(A,D).
This previously used function in Algorithm 1, is
now modified to take the ambiguous lemmas of
polysemy ≤ ρ in set A and previously disam-
biguated lemma senses in set D. The resulting
graph has a limited degree of polysemy and is con-
structed based on previous disambiguations.

From this point on the given graph centrality
measure φ is run over GL. For the lemmas that
are disambiguated, they are removed from A and
the selected sense is added toD. For those lemmas
that are not (i.e. ŝi,∗ does not exist3) they remain in
A to be involved in reattempted disambiguations
in consecutive iterations. As more lemmas are dis-
ambiguated, it is more likely that previously diffi-
cult to disambiguate lemmas become much easier
to solve, just like at the end of a Sudoku puzzle it
gets easier as you get closer to completing it.

4 Evaluations

In our evaluations we set out to understand a num-
ber of aspects. The first evaluation is a proof of
concept, to understand whether an iterative ap-
proach to subgraph WSD can in fact achieve better
performance than the conventional approach. The
second set of experiments seeks to understand how
the iterative approach works and the performance
benefits and penalties of implementing the itera-
tive approach. Finally the third experiment is an
elementary attempt at optimising the iterative ap-
proach to defeat the MFS baseline.

4.1 LKB & Dataset

For an evaluation, we have chosen the multi-
lingual LKB known as BabelNet (Navigli and
Ponzetto, 2012a). It weaves together several other
LKBs, most notably WordNet (Fellbaum, 1998)
and Wikipedia. It also can be easily accessed with
the BabelNet API, of which we have built our code
base around. All experiments are conducted on
the most recent SemEval WSD dataset, of which
is the SemEval 2013 Task 12 Multilingual WSD
(English) data set.

3This can happen if `i does not map to any senses, or
alternatively all the senses that are mapped to are filtered out
of the subgraph before disambiguation (explained later).

4.2 Graph Centrality Measures Evaluated
To demonstrate the effectiveness of our iterative
approach, we selected a range of WSD graph-
based centrality measures often experimented with
in the literature. Firstly φ does not need to be a
complicated measure, this is demonstrated by the
success of ranking senses by their number of in-
coming and outgoing edges. Even though it is very
simple, it performs surprisingly well against others
for both In-Degree (Navigli and Lapata, 2007) and
Out-Degree (Navigli and Ponzetto, 2012a)

Next we employ graph centrality measures
that are primarily used to disambiguate the se-
mantic web, such as PageRank (Brin and Page,
1998), HITS Kleinberg (1999), and a personalised
PageRank (Haveliwala, 2003); which have since
been applied to WSD by Mihalcea (2005), Navigli
and Lapata (2007), and Agirre and Soroa (2009)
respectively. We also include Betweeness Central-
ity (Freeman, 1979) which is taken from the anal-
ysis of social networks.

These methods are well known and applied
across many disciplines, therefore we will leave it
to the reader to follow up on the specifics of these
graph centrality measures. However we do ex-
plicitly define our last measure, Sum Inverse Path
Length (Navigli and Ponzetto, 2012a; Navigli and
Ponzetto, 2012b) in Equation (1) which was de-
signed with WSD in mind, thus is less well known.

φ(s) =
∑

p∈Ps→c

1

e|p|−1
(1)

This measure scores a sense by summing up the
scores of all paths that connect to other senses in
GL (i.e. senses that are not intermediate nodes, but
have a mapping back to a lemma in the context
window L). In the words of Navigli and Ponzetto
(2012a), Ps→c is the set of paths connecting s
to other senses of context words, with |p| as the
number of edges in the path p and each path is
scored with the exponential inverse decay of the
path length.

4.3 Experiment 1: Proof of Concept
4.3.1 Experiment 1: Setup
For this experiment we simply set out to see how
the iterative approach performed compared to the
conventional approach in a range of experimental
conditions. Directed and unweighted subgraphs
were used, namely subtree paths and shortest paths
subgraphs with L = 2. To address the issue of



GL φ Conventional Doc Iterative Doc Improvement
P R F P R F ∆P ∆R ∆F

Su
bT

re
e

Pa
th

s
In-Degree 61.70 55.51 58.44 65.39 63.74 64.55 +3.69 +8.23 +6.11
Out-Degree 54.23 48.78 51.36 57.70 56.23 56.96 +3.47 +7.45 +5.59
Betweenness Centrality 59.29 53.34 56.15 63.43 61.82 62.61 +4.14 +8.48 +6.46
Sum Inverse Path Length 56.58 50.90 53.59 58.86 57.37 58.11 +2.28 +6.47 +4.51
HITS(hub) 54.69 49.20 51.80 59.71 58.20 58.95 +5.03 +9.00 +7.15
HITS(authority) 57.45 51.68 54.41 61.62 60.06 60.83 +4.18 +8.38 +6.42
PageRank 60.09 54.06 56.92 64.07 62.44 63.24 +3.97 +8.38 +6.33

Sh
or

te
st

Pa
th

s

In-Degree 63.06 56.08 59.36 65.36 63.06 64.19 +2.30 +6.98 +4.83
Out-Degree 57.07 50.75 53.72 61.14 58.92 60.01 +4.07 +8.17 +6.29
Betweenness Centrality 60.33 53.65 56.79 65.52 63.22 64.35 +5.20 +9.57 +7.56
Sum Inverse Path Length 57.53 51.16 54.16 61.19 58.98 60.06 +3.66 +7.81 +5.90
HITS(hub) 57.48 51.11 54.11 62.14 59.96 61.03 +4.67 +8.85 +6.92
HITS(authority) 60.91 54.16 57.34 63.54 61.30 62.40 +2.63 +7.14 +5.06
PageRank 60.33 53.65 56.79 64.83 62.55 63.67 +4.50 +8.90 +6.87

Table 1: Improvements of using the Iterative Approach at the Document Level

GL φ Conventional Sent Iterative Sent Improvement
P R F P R F ∆P ∆R ∆F

Su
bT

re
e

Pa
th

s

In-Degree 60.83 50.70 55.30 61.80 56.23 58.88 +0.96 +5.54 +3.58
Out-Degree 56.18 46.82 51.07 59.64 54.11 56.74 +3.46 +7.29 +5.67
Betweenness Centrality 59.40 49.51 54.01 61.66 56.08 58.74 +2.26 +6.57 +4.73
Sum Inverse Path Length 56.67 47.23 51.52 59.45 54.01 56.60 +2.78 +6.78 +5.08
HITS(hub) 55.49 46.25 50.45 59.51 54.06 56.65 +4.02 +7.81 +6.20
HITS(authority) 56.80 47.34 51.64 60.30 54.84 57.44 +3.50 +7.50 +5.80
PageRank 59.71 49.77 54.29 60.56 55.04 57.67 +0.84 +5.28 +3.38

Sh
or

te
st

Pa
th

s

In-Degree 58.13 32.75 41.89 63.79 42.11 50.73 +5.66 +9.36 +8.84
Out-Degree 54.64 30.78 39.38 61.79 40.66 49.05 +7.15 +9.88 +9.67
Betweenness Centrality 57.94 32.64 41.76 64.11 42.32 50.98 +6.17 +9.68 +9.22
Sum Inverse Path Length 55.65 31.35 40.11 62.39 41.02 49.50 +6.74 +9.67 +9.39
HITS(hub) 56.11 31.61 40.44 62.74 41.28 49.80 +6.63 +9.67 +9.36
HITS(authority) 55.74 31.40 40.17 62.75 41.39 49.88 +7.01 +9.98 +9.70
PageRank 56.84 32.02 40.97 63.17 41.70 50.23 +6.33 +9.67 +9.27

Table 2: Improvements of using the Iterative Approach at the Sentence Level

senses anchored to the same lemma assisting each
other’s φ score (as discussed in Section 3.1), the
SENSE_SHIFTS filter that is provided by the Ba-
belNet API was also applied. This filter removes
any path Pa→b such that sa, sb ∈ R(`i). Disam-
biguation was attempted at the document and sen-
tence level, making use of the eight well-known
graph centrality measures listed in section 4.2. For
this experiment no means of optimisation were ap-
plied. Therefore Personalised PageRank was not
used, and traditional PageRank took on a uniform
random surfing vector. Default values of 0.85 and
30 for damping factor and maximum iterations
were set respectively.

4.3.2 Experiment 1: Observations
First and foremost, it is clear from Table 1 and 2
that the iterative approach outperforms the con-
ventional approach, regardless of the subgraph

used, level of disambiguation, or the graph central-
ity measure employed. Since no graph centrality
measure or subgraph were optimised, let this ex-
periment prove that the iterative approach has the
potential to improve any WSD system that imple-
ments it.

At the document level for both subgraphs the F-
Scores were very close to the Most Frequent Sense
(MFS) baseline for this task of 66.50. It is noto-
riously hard to beat and only one team (Gutiérrez
et al., 2013) managed to beat it for this task. For
all subtree subgraphs, we observe that In-Degree is
clearly the best choice of centrality measure, while
HITS (hub) enjoys the most improvement. We
also observe that applying the iterative approach
to Betweenness Centrality on shortest paths is a
great combination at both the document and sen-
tence level, most probably due to the measure be-
ing based on shortest paths. Furthermore it is



worth noting, the results at the sentence level for
all graph centrality measures on shortest path sub-
graphs are quite poor, but highly improved, this
is likely to our restriction of L = 2 causing the
subgraphs to be much sparser and broken up into
many components.

We also provide here an example from the data
set in which the incorrect disambiguation of the
lemma cup via the conventional approach was
corrected by the iterative approach. This example
is the seventh sentence in the eleventh document
(d011.s007). Each word’s degree of polysemy
is denoted in square brackets.

“Spanish [1]football players playing in the All-Star
[4]League and in powerful [12]clubs of the [2]Premier
League of [9]England are during the [5]year very ac-
tive in [4]league and local [8]cup [7]competitions and
there are high-level [25]shocks in the [10]European
Cups and [2]European Champions League.”

The potential graph constructed from this sen-
tence is illustrated in Figure 5 as a shortest paths
subgraph. The darker edges portray the subgraph
iteratively constructed up to a polysemy ρ ≤ 8
(in order to disambiguate cup), whereas the lighter
edges portray the greater subgraph constructed if
the conventional approach is employed. Note that
although the lemma cup has eight senses, only
three are shown due to the application of the previ-
ously mentioned SENSE_SHIFTS filter. The re-
maining five senses of cup were filtered out since
they were not able to link to a sense up to L = 2
hops away that is anchored to an alterative lemma.

• cup#1 - A small open container usually used for
drinking; usually has a handle.

• cup#7 - The hole (or metal container in the hole)
on a golf green.

• cup#8 - A large metal vessel with two handles that
is awarded as a trophy to the winner of a competi-
tion.

Given the context, the eighth sense of cup is the
correct sense, the type we know as a trophy. For
the conventional approach, if φ is a centrality mea-
sure of Out-Degree then the eighth sense of cup is
easily chosen by having one extra outgoing edge
than the other two senses for cup. Yet if φ is a cen-
trality measure of In-Degree or Betweenness Cen-
trality, all three senses of cup now have the same
score, zero. Therefore in our results the first sense
is chosen which is incorrect. On the other hand, if

[8]cup#1

handle#1

[12]golf_club#2

[4]league#2

association#1

[12]club#2

[7]contest#1

tournament#1

[4]league#1

[12]baseball_club#1

baseball_league#1

[9]England#1

Australia#1

[5]year#1

[8]cup#7

golf#1

[8]cup#8

monopoly#1

[7]competition#1

match#2

sport#1

[7]competition#3

Figure 5: Conventional vs Iterative Subgraph

the subgraph was constructed iteratively with dis-
ambiguation results providing feedback to consec-
utive constructions, this could have been avoided.
The shortest paths cup#1→handle#1→golf_club#2
and cup#7→golf#1→golf_club#2 only exist because
the sense golf_club#2 (anchored to the more poly-
semous lemma club) is present, if it was not then
the SENSE_SHIFTS filter would have removed
these alternative senses. This demonstrates that if
the senses of more polysemous lemmas are intro-
duced into the subgraph too soon, they can inter-
fere rather than help with disambiguation.

Secondly with each disambiguation at lower
levels of polysemy, a more stable context is con-
structed to perform the disambiguation of much
more polysemous lemmas later. Therefore in Fig-
ure 5 an iteratively constructed subgraph with cup
already disambiguated, would mean the other two
senses of cup would no longer be present. This en-
sures that club#2 (the correct answer) would have
a much stronger chance of being selected than
golf_club#2, which would have only one incoming
edge from handle#1. Note the conventional ap-
proach would lend golf_club#2 one extra incoming
edge than club#2 has, which could be problematic
if φ is a centrality measure of In-Degree.
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Figure 6: For each of the 13 documents, performance (F-Score) is plotted against time to disambiguate,
for GL = Shortest Paths. The squares (PageRank) and circles (Betweenness Centrality) plot the conven-
tional approach. The arrows show the effect caused by applying the iterative approach, with the arrow
head marking its F-Score and time to disambiguate.

4.4 Experiment 2: Performance

4.4.1 Experiment 2: Setup

An obvious caveat of the iterative approach is that
it requires the construction of several subgraphs
as ρ increases, which of course will require extra
computation and time which is a penalty for the
improved precision and recall. We decided to in-
vestigate the extent to which this happens. We se-
lected Betweenness Centrality and PageRank from
Experiment 1, in which both use shortest path sub-
graphs at the document level. This is because a)
they acquired good results at the document level
and b) with only 13 documents there are less data
points on the plots making it easier to read as op-
posed to the hundreds of sentences.

4.4.2 Experiment 2: Observations

Firstly from Figures 6(a) and (b) we see that
there is a substantial improvement in F-Score
for almost all documents, except for two for φ =
Betweenness Centrality and one for φ = PageR-
ank. With some exceptions, for most documents
the increased amount of time to disambiguate is
not unreasonable. For this experiment, applying
the iterative approach to Betweenness Centrality
resulted in a mean 231% increase in processing
time, from 3.54 to 11.73 seconds to acquire a
mean F-Score improvement of +8.85. Again for
PageRank, a mean increase of 343% in processing
time, from 1.95 to 8.64 seconds to acquire a
F-Score improvement of +7.16 was observed.

We wanted to investigate why in some cases, the
iterative approach can produce poorer results than
the conventional approach. We looked at aspects
of the subgraphs such as order, size, density, and
number of components. Eventually we came to
the conclusion that, just like in a Sudoku puzzle, if
there are not enough hints to start with, the possi-
bility of finishing the puzzle becomes slim.

Therefore we suspected that if there were not
enough monosemous lemmas, to construct the ini-
tial GL, then the effectiveness of the iterative ap-
proach could be negated. It turns out, as observed
in Figures 7(a) and (b) on the following page that
this does effect the outcome. On the horizontal
axis, document monosemy represents the percent-
age of lemmas in a document, not counting dupli-
cates, that are monosemous. The vertical axis on
the other hand represents the difference in F-Score
between the conventional and iterative approach.
Through a simple linear regression of the scatter
plot, we observe an increased effectiveness of the
iterative approach. This observation is important,
because a WSD system may decide on which ap-
proach to use based on a document’s monosemy.

With m representing document monosemy, and
∆F representing the change in F-Score induced
by the iterative approach, the slopes observed in
Figures 7(a) and (b) are denoted by Equations (2)
and (3) respectively.

∆F = 0.53m− 0.11 (2)

∆F = 0.60m− 3.07 (3)
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Figure 7: Both PageRank (squares) and Betweenness Centrality (circles) are plotted. Each data plot
represents the change in F-Score when the iterative approach replaces the conventional approach with
respect to the monosemy of the document.

4.5 Experiment 3: A Little Optimisation

Briefly, we made an effort into optimising the iter-
ative approach with subtree subgraphs, and com-
pared these results with systems from SemEval
2013 Task 12 (Navigli et al., 2013) in Table 3.

Team System P R F

UMCC-DLSI Run-2+ 68.50 68.50 68.50
UMCC-DLSI Run-3+ 68.00 68.00 68.00
UMCC-DLSI Run-1+ 67.70 67.70 67.70
SUDOKU It-PPR[M]+ 67.62 67.51 67.56

MACHINE MFS 66.50 66.50 66.50
SUDOKU It-PPR[M] 67.20 65.49 66.33
SUDOKU It-PR[U] 64.07 62.44 63.24
SUDOKU It-PD 63.58 61.41 62.47
DAEBAK! PD+ 60.47 60.37 60.42
GETALP BN-1+ 58.30 58.30 58.30
SUDOKU PR[U] 60.09 54.06 56.91
GETALP BN-2+ 56.80 56.80 56.80

Table 3: Comparison to SemEval 2013 Task 12

Firstly, we were able to marginally improve our
original result as team DAEBAK! (Manion and
Sainudiin, 2013), by applying the iterative ap-
proach to our Peripheral Diversity centrality mea-
sure (It-PD). Next we tried Personalised PageRank
(It-PPR[M]) with a surfing vector biased towards
only Monosemous senses. We also included reg-
ular PageRank (It-/PR[U]) with a Uniform surfing
vector as a reference point. It-PPR[M] almost de-
feated the MFS baseline of 66.50, but lacked re-
call. To rectify this, the MFS baseline was used as
a back-off strategy (It-PPR[M]+)4, which then led

4Note that plus+ implies the use of a back-off strategy.

to us beating the MFS baseline. As for the other
teams, GETALP (Schwab et al., 2013) made use
of an Ant Colony algorithm, while UMCC-DLSI
(Gutiérrez et al., 2013) also made use of PPR,
except they based the surfing vector on SemCor
(Miller et al., 1993) sense frequencies, set L = 5
for shortest paths subgraphs, and disambiguated
using resources external to BabelNet. Since their
implementation of PPR beats ours, it would be
interesting to see how effective the iterative ap-
proach could be on their results.

5 Conclusion & Future Work

In this paper we have shown that the iterative ap-
proach can substantially improve the results of
regular subgraph-based WSD, even to the point
of defeating the MFS baseline without doing any-
thing complicated. This is regardless of the sub-
graph, graph centrality measure, or level of disam-
biguation. This research can still be extended fur-
ther, and we encourage other researchers to rethink
their own approaches to unsupervised knowledge-
based WSD, particularly in regards to the interac-
tion of subgraphs and centrality measures.

Resources

Codebase and resources are at first author’s home-
page: http://www.stevemanion.com.
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