
 1

MASSEY UNIVERSITY

INSTITUTE OF INFORMATION AND SCIENCES

TECHNOLOGY

SUPERVISOR

LIYANAGE DE SILVA

AMAL PUNCHIHEWA

INTERACTIVE TRANSLATION OF JAPANESE TO

KOREAN VIA CELLULAR TECHNOLOGY

STEVE MANION

2006

lcdesilv
Text
Steve L. Manion (Supervised by Liyanage C De Silva and G A Punchihewa), “Interactive Translation of Japanese to Korean via Cellular Technology”, Bachelor of Science in Engineering Thesis, Institute of Information Sciences and Technology, Massey University New Zealand, October 2006.

lcdesilv
Text
For Evaluation Only.

Copyright (c) by VeryPDF.com Inc

Edited by VeryPDF PDF Editor Version 2.2

 2

Contents Page

Summary... 4

1 Introduction... 5

1.1 The Service ... 5

1.2 The Market.. 5

2 Background ... 6

2.1 Previous Research... 6

2.1.1 ATR Japan .. 6

2.1.2 ETRI Korea... 6

2.2 Related Products ... 7

2.2.1 SK Telecom’s “Real World Phone” ... 7

2.2.2 Sony PSP’s Talkman... 8

2.3 Conventional Translation Methods... 9

2.3.1 Dictionary-Based Machine Translation .. 9

2.3.2 Statistical Machine Translation... 9

2.3.3 Example-Based Machine Translation ... 9

2.3.4 Interlingual Machine Translation.. 9

2.4 The Japanese & Korean Language ... 10

2.4.1 Particles... 10

2.4.2 Structure.. 10

2.4.3 Word Derivation ... 10

3 The Translator ... 11

3.1 Design ... 11

3.1.1 Data Model.. 11

3.1.2 Key Class Profiles... 13

3.1.3 Fish Bone Composition... 19

3.2 Implementation ... 20

3.2.1 Hardware... 20

3.2.2 Software .. 21

3.2.3 Customer Access... 23

4 Results... 24

4.1 Trialling of the Concept .. 24

4.2 Performance Report .. 26

4.2.1 Dexterity ... 26

4.2.2 Speed... 31

4.2.3 Versatility.. 31

4.3 Market Analysis .. 32

4.3.1 Survey Method.. 32

4.3.2 Survey Analysis .. 32

4.3.3 Market Projections .. 44

5 Conclusions... 46

6 References... 48

7 Acknowledgements... 49

7.1 People.. 49

7.2 Resources .. 49

 3

8 Appendix... 50

8.1 Survey ... 50

8.1.1 Deployed Survey (Japanese Version) ... 51

8.1.2 Results (English Version) ... 54

8.2 FBCT Algorithm (Stand Alone Version).. 56

8.2.1 Control Class... 57

8.2.2 Sentence Strip Class (Procedure).. 58

8.2.3 Word Class (Container) .. 70

8.2.4 Grammar Skeleton (Container)... 74

8.2.5 Rule Gate (Support) .. 76

8.2.6 Translate (Procedure).. 80

8.3 FBCT Access Algorithm (Skeletal Version) .. 84

8.3.1 JKTranslation Class .. 85

8.3.2 HttpConnectionHelper Class .. 92

 4

Summary

Translation of language via cellular technology is now in the crosshairs of cellular phone

developers. Still yet to be achieved is translation of Japanese to Korean. The two

languages share several aspects which makes translation between them a key candidate

for the translation algorithm I designed, abbreviated as FBCT, Fish Bone Composition

Translation. Typical translators attempt to translate sentences using a combination of

dictionary attacks, probability techniques or segmented translation which is usually offers

a piecewise solution of sub translations concatenated together. These methods work to an

extent but not enough importance is weighted on the actual pattern of the sentence or how

the translated segments are concatenated back together to provide the final translated

sentence. In reality conventional methods can be successful, but usually rely on

situational databases of words and grammar depending on the scenario. For more broad

translation of text these methods can fall short and we receive garble translations because

the overall meaning or intention of the sentence can be lost during translation. FBCT is

an algorithm I designed which treats every possible sentence as a unique combination of

grammar and words when it translates, so there is an applicable blueprint and translation

function designed in advance for every possible sentence. By coordinating and taking

advantage of the processing power of a server and portability of a cellular phone we have

the ideal hand held translator. It can be constantly updated at the server end as language

evolves, and access rights to the translation service are easily loaded on to the phone

account of any visitor from Japan to Korea at the airport terminal.

 5

1 Introduction

1.1 The Service

The service will provide customers with the ability to translate anything they wish to

express using a cellular phone that they can easily acquire from the airport as the enter

Korea. Visitors from Japan to Korea can have piece of mind that they will have the

ability if caught out in any difficult situation, to clearly explain their way out of it. The

service also converts the cellular phone to an educational device, as users will have the

ability to learn simple expressions and the fundamentals of the grammar used in previous

translations stored within the phone, as well as other options such as synthesised speech

files of the translated message for the user to play back. The service is always up to date

at no extra cost for its users. Any new words or grammar constructs that come about

between the translations of the two languages can be compensated for and updated at the

server end; this means no wasted time on update downloads or fees for an updated

service. Lastly the service is very transferable, a simple download onto your phone to

give you access rights to the service is all that is required. If the user wishes to no longer

use the service their subscription is easily cancelled and the software itself the user can

delete from their phone. The operations of this service and how it is to be implemented

will be covered in detail within this report.

1.2 The Market

Japan is Korea’s number one source as a country for tourism revenue, with Japanese

visitors to Korea far exceeding the amount of visitors from any other country. Therefore,

tourism related products should in particular be geared for the Japanese market. This

service forges together the two industries of IT and tourism together, which are two of the

three top growth industries expected to be in the next 20 years. A survey conducted in

this research, showed very positive results indicating that most Japanese tourists would

be interested in having access to such a translation service whilst they are in Korea. Even

if only a fraction of them actually were willing to acquire the service whilst in Korea, the

direct and indirect profit that can be accumulated by Korea is substantial. A Market

Analysis based on a conducted survey has been put together to demonstrate the value of

this project which can be later viewed in this report.

 6

2 Background

2.1 Previous Research

Oriented to the development of practical SST system for the Olympic Games, ATR-SLT,

ETRI of Korea, and CAS-IA jointly signed the CJK (Chinese-Japanese-Korean)

cooperation agreement. The purposes of the agreement is to joint research and develop a

Speech-to-Speech Translator (SST) system, which converts spoken expressions, related

to travel conversation between the three languages (the Japanese language, the Chinese

language, the Korean language). [1]

2.1.1 ATR Japan

The Advanced Telecommunications Research Institute International (ATR) of Japan was

established in 1986 and was the first laboratory to work on the speech-to-speech

translation in Asia. Between 1993 and 1999 ATR designed various prototype systems

which could translate spoken Japanese into Korean, German, English and Chinese. In

1998, ATR successfully developed the ATR-MATRIX Japanese-English bi-directional

speech translation system, which was later operational on PC notebooks and accessible

for users with a cellular phone. This of course was one of the first cellular phone based

translators to be developed. [1] ATR now strives to design translation systems which

focus on real world situations, comprising of situation based translations in which

particular grammar and utterances occur frequently.

2.1.2 ETRI Korea

The Electronics & Telecommunications Research Institute (ETRI) of Korea has been

conducting research on speech translation under government funding. The main focus of

ETRI is on how to use speech translation technology in real life. This is because the

feasibility of the technology that had been shown in previous demonstrations, such as the

ETRI-KT-KDD demonstration on hotel reservations in 1995 and the C-STAR II

demonstration on travel planning in 1999. These prototype translators could translate

speech related to travel planning with a 5,000 word vocabulary from Korean to English

and from Korean to Japanese. [2] Due to their success in situational translation systems,

ETRI has targeted on mobile phone speech recognition, translation of simple but crucial

expressions for travellers, and dialogue style speech synthesis. [1]

 7

2.2 Related Products

Translation Software is appearing on all portable platforms as people continue to travel

around the world and carry these devices; it makes the spread of such products quite easy.

2.2.1 SK Telecom’s “Real World Phone”

On the 13
th

 of September, SK Telecom and Samsung Electronics disclosed to the public

that it would release the SCH-V920. The importance of this phone is its ability to be

used in both CDMA and GSM networks, allowing the phone to be used almost anywhere

in the world. The phone also comes with a translator built in. “An Anycall Translator

function has also been included, allowing translation of simple expressions in various

situations into English, Japanese and Chinese in airports, hotels and stores.” [3] This

product is able to translate in the opposing direction from Korean to Japanese at an

elementary level. The SCH-V920 is a flagship phone that has paraded onto the

development scene of translation via cellular technology; more are expected to follow.

Fig 1. The new SCH-V920 Real World Phone [3]

 8

2.2.2 Sony PSP’s Talkman

Earlier this year Sony released the game “Talkman” for its PSP (Play Station Portable)

which was described by GameSpot, a leading gamer magazine as an “Interactive

translator and language tutor that helps you communicate in six foreign languages, and

makes for a novel, if flawed, travelling companion.” [4] This device takes translation

from a more educational angle making it into a game to encourage users to learn the

language whilst on their travels. However as a real portable translator it has been

reviewed by many, including GameSpot as falling short of the mark. Mainly due to the

games limited phrases in situations and loading time for the correct scenarios, defeating

the translator’s ability to perform in real time for the user.

Fig 2. A screen shot of the Talkman translation game [4]

 9

2.3 Conventional Translation Methods

2.3.1 Dictionary-Based Machine Translation

This method of translation is at the very atomic level, with no overhead complexities;

words in a sentence are replaced word for word from the source language to the target

language. This low level of translation almost always generates meaningless strings of

words; however for very short text translations it can be adequate.

2.3.2 Statistical Machine Translation

This technique is derived from information theory. “Essentially, the document is

translated on the probability that a string in the Source Language A is the translation of a

string in the Target language B using parameter estimation.” [5] This method can be

highly effective in controlled scenarios, for instance booking a train ticket where

probability of certain statements and words are very high.

2.3.3 Example-Based Machine Translation

This is not a solid technique for general translation; however it is a nice add-on that can

improve the performance of a translator. Basically it generates rules about which words

can be swapped in a sentence without changing the overall meaning of a sentence. More

or less, it gives the translator the ability to paraphrase its output into the target language if

needs be.

2.3.4 Interlingual Machine Translation

This is where an intermediate that is language independent is created by analysing the

source language in depth, then using the intermediate to reconstruct the equivalent

meaning in another language of the user’s choice. This method is very rule based and

when there are numerous languages at play, the process becomes very difficult as the

intermediate must cater for more languages, in turn becoming more diverse but losing

dexterity to achieve complex translations specific to each respective language. The

method of translation used in this project is a variation of this technique; defining an

intermediate labelled the Fish Bone Composition that is dedicated to taking advantage of

the similarities the Japanese and Korean language. There are only two languages

involved enabling it to be highly accurate as it can deal with a dynamic range of

complexities between the two languages alone. More on this will be explained later.

 10

2.4 The Japanese & Korean Language

Before one can fully appreciate Fish Bone Composition Translation, one must understand

some key fundamentals and similarities that occur between the two languages to

understand why they are key candidates for bidirectional translation.

2.4.1 Particles

European languages usually rely on word order and the insertion of appropriate

prepositions to define context of each word in a sentence. On the contrary, the Japanese

and Korean language share what are known as particles. A particle is placed behind each

word or group of words forming a sub clause to define its context in the sentence.

Therefore the word order can often be moved around without affecting the overall

meaning of the sentence. Detection of the existing particles and the word types they

appear after in a sentence is one of the key ways my translator is able to identify the

grammar constructs that exist in a sentence. There are particles that exist in the Japanese

and Korean language that follow almost the same behaviour within the two languages, a

key aspect which should be taken advantage of during translation.

2.4.2 Structure

The Japanese and Korean language share very similar grammar constructs, such as verbs

and adjective always appearing at the end of a sentence, and sentence characteristics such

as the subject sometimes being omitted and so forth. A common problem when

translating for a European language to an Asian language or vice versa is finding

grammar constructs that may exist in one language but not exist in another language.

This rarely happens between Japanese and Korean due to their close relation in structure.

2.4.3 Word Derivation

Both the Japanese and Korean imported many things from Chinese culture over the

centuries including the Chinese alphabet, which is still used by the Japanese today.

Borrowing the Chinese alphabet, naturally Chinese words were also implemented into

these two languages. Therefore there is a reasonable portion of the two languages still

use these Chinese words, even though not pronounced or spelt the same; they still largely

retain their original meaning which makes finding a word in Korean with the equivalent

meaning in Japanese a little easier.

 11

3 The Translator

3.1 Design

3.1.1 Data Model

The system comprises of six main class types and a database that altogether are called

upon by the control class to achieve the overall translation. There are three types of main

classes, known as Procedure classes, Support classes and Container classes. The

database strictly holds information and interacts with the Dictionary class, and lastly the

Container classes are stored and referenced to their respective registers as there are

multiple instances of them in a translation.

Fig 3. Class type and interaction revealed by the Data Model of the Translator

 12

Procedure Class

The two Procedure Classes Sentence Strip and Translate do the main work within the

algorithm. Sentence Strip is responsible for identify the blueprint grammar pattern of

each sentence and surgically removing and storing required translation data in the

Container Classes. Conversely, Translate is responsible for using the Container Classes

to reconstruct the equivalent Korean sentence in respect to the original Japanese sentence,

in other words providing a translation. Both of these classes perform the two major

operations in a text translation, the breaking down and reconstruction of a sentence.

Therefore they are known here on as Procedure Classes.

Support Class

The two Support Classes Dictionary and Rule Gate serve as aids to the Procedure Classes,

providing the necessary resources to execute a text translation. Dictionary provides all

the data required to construct the Container Classes. Its greater purpose though, is to

enable the Procedure Class Sentence Strip to interactive with the database. Rule Gate

provides all the grammatical conventions that are intertwined in the Korean language as

methods for the Procedure Class Translate to use as it sees fit to execute a successful

translation.

Container Class

The purpose of Container Classes Word and Grammar Skeleton is to strictly hold

information, and act as a complex data variable enabling more accurate and dynamic

translation that does not lose the context of the subject sentence in the process. Word

provides detailed data about the word concerning its type, Korean equivalents and many

forms of use. Grammar Skeleton on the other hand records all data associated with the

overall sentence composition for later use.

Database

The Database naturally acts as the giant warehouse of data that is required for the

translator to operate functionally.

 13

3.1.2 Key Class Profiles

Sentence Strip

Fig 4. Internal representation of the Procedure Class ‘Sentence Strip’

Firstly, the Japanese text is input as an operand in the construction of the class Sentence

Strip. Once generated, the control class invokes Sentence Strip to strip each sentence in

the Japanese text of all its key identifying aspects. For each word found, the Container

Class Word is generated. Each sentence is traced and the Container Class Grammar

Skeleton is generated for that particular sentence pattern. As can be seen, the Dictionary

class interacts with Sentence Strip providing it with the resources it needs to construct

instances of the Container Classes.

 14

Word

Fig 5. Internal representation of the Container Class ‘Word’

For each discovered and identified word found in a sentence, the Procedure Class

Sentence Strip generates an instance of the Container Class Word. Figure 5 illustrates the

composition of the class Word. Centrally it holds the Japanese word along with its

Korean equivalent(s). Then depending on the word type and description, other additional

information is also collected about the word and also is stored in the constructed instance

of Word. From our sample Japanese sentence, let’s take the first word, ‘映画館’

(Cinema), and refer to the diagram of its construction. The Korean equivalent is

‘영화관’, its type is Noun and its description is Location. Lastly a Korean word either

 15

has a Pachim or not. Explanation of what a Pachim is not necessary however you should

know it is important as words with and without Pachims are treated differently in Korean

Grammar. Since the word type is a Noun, aside from Noun alternatives there are few

other variables to be stored as elements in the instance of Container Class Word.

However say if the instance of Container Class Word was a Verb, there would be many

elements at play, such as the Verb Tense, and so forth. Storing such information about a

word may seem resource wasting and time consuming, however the true benefits of it

will become apparent later in the explanation of this example.

Grammar Skeleton

Fig 6. Internal representation of the Container Class ‘Grammar Skeleton’

From figure 6, it starts to become apparent how the name Fish Bone Composition is an

appropriate name for this method of translation. The Grammar Skeleton is traced, which

basically means all words are stripped from the sentence, only leaving particles and

grammar constructs behind. This is what we call the Grammar Skeleton and it comprises

of three component types listed and defined over the following page.

 16

Spine

The Spine of the sentence is a concatenated string of all the grammar constructs, omitting

any particles that occur. It could be considered as the main sentence trace, which can link

all of the other sub clauses together; therefore it is appropriate to label it as the Grammar

Spine of the sentence. In English, words such as but, because and when would be caught

into the Grammar Spine.

Bones

As grammar constructs are caught into the Grammar Spine, the groups of neighbouring

omitted particles are caught into a Bone, which is the equivalent of a sub clause. In this

sense, there lies a Bone between every grammar construct caught in the Grammar Spine.

Muscle Link Serial Number

As mentioned earlier, a lot of translators that perform segmented translation and then put

the segments back together to provide the final translation usually fall short because not

enough attention is paid to how the sentence is put back together. Bones are usually

connected together by links of Muscle, so it makes sense to use this term when describing

the process of connecting the Bones back to the Grammar Spine of the sentence. Simply

put, there are several ways to alter the end of a sub clause, a Bone, to connect it back into

the main sentence. Each number as it occurs in the MLSN, the Muscle Link Serial

Number, references to how the next Bone should be linked back into the Grammar Spine

of the sentence. How this is done can be seen later.

 17

Translate

Fig 7. Internal representation of the Procedure Class ‘Translate’

Once all the necessary

Container Classes have been

created and stored away into

their respective registers, they

are input as operands in

generation of the Procedure

Class Translate. Once

generated, the control class

requests a translation; this

being the final output of the

translator. First of all, each of

the Bones is translated and

Words are entered where

appropriate to complete the

translated Bone. The Support

Class Rule Gate assists by

providing the necessary

methods required to adhere to

all grammatical rules that

exist within the Korean

language. Once the Bones are

translated, they now need to

be altered so they can be

linked into the Grammar

Spine. This is where the

Muscle Link Serial Number

(MLSN) comes into play. If

we take a look at our example

the MLSN is #51.

 18

The number 5 in the MLSN calls for a “Verb/Adjective Stem Reduction” Muscle Link, so

for the first Bone in the sentence, the Verb form ‘싶습니다’ (to want to ~) is reduced to

its verb stem ‘싶’. This now becomes the first Muscle Link. Following this, the number

1 calls for a “Sentence End” Muscle Link, so the second Bone in the sentence has its final

Word ended normally with a period concatenated to it, ‘모릅니다.’ (to not know), this

indicates the end of the sentence. Each sentence having to end at some point, we can

assume that every MLSN will end with the number 1 (#???1). The Grammar Spine of

the sentence is what is used to generate the MLSN, as the only reason the last word in a

Bone should require changing is because it has come across a grammar construct, which

is precisely what the Grammar Spine captures. Now look at the final process that occurs

in Translate. The Grammar Spine is laid out and each respective Bone in the sentence is

connected to the Grammar Spine via its respective Muscle Link. From figure 7, one can

see how the translated sentence is reconstructed. In addition to this, table 1 below can be

used for one to better understand the actual grammatical breakdown of the translated

sentence.

Japanese: 映画館に行きたいですが、どこにあるか分かりません。

Korean: 영화관에가고싶지만, 어디에있는지모릅니다.

English: I would like to go to the Cinema, but I do not know where it is.

Cinema

(Location

Particle)

(want) to

go

(Conventional Verb

Ending) but

映画館 に 行きたい です が

영화관 에 가고싶 습니다 지만

where

(Location

Particle) exist

(Noun Modifying

Particle)

(Question

Particle) do not know (Period)

どこ に ある (X) か 分かりません 。

어디 에 있 는 지 모릅니다 .

Table 1. Grammatical breakdown of the translated sentence

 19

Fig 8. Representation of FBCT, Fish Bone Composition Translation

3.1.3 Fish Bone Composition

Each sentence translated and concatenated together, we begin to see an actual real

skeleton, much like the type you see on a fish. Hence the term Fish Bone Composition

Translation is conned. The diagram illustrates the Fish Bone Composition of a text

translation. The Translation Header carries all information regarding the overall

composition of the translated sentence and where it is destined to be sent. Typical

information would be how many characters in length the message is and the subscriber’s

phone details so he or she can be charged and recorded using the service at that point in

time. Following the Translation Header, is the body which consists of the overall

translated text, broken down into its respective sentences and bone composition to

portray the skeletal structure of a fish. Lastly, the Translation Tail is attached, which has

the general purpose of indicating that it is the end of the translation. This is the end result

of the translator and what I have now finished explaining as FBCT.

 20

3.2 Implementation

3.2.1 Hardware

There are two important hardware features required for this project, a server and a

wireless communication device such as a cellular phone. The detailed requirements of

each follow:

Server

To make this project scalable, of course multiple servers are required, with the

Translation application duplicated many times across the servers. Efficient use of the

servers needs to be compensated by an effective routing algorithm so there is minimal

inactiveness of the processor between translations for each server. Lastly the servers

need to be managed effectively and updates to the Translation application should made

constantly to keep up with changes that occur between the two languages to ensure

customer satisfaction.

Cellular Phone

Each Cellular phone must be operational on the CDMA network in Korea. Since the

project took place here in New Zealand this however was not necessary. The cellular

phone used for the project in any case must have the following properties:

1. Be capable of inputting Japanese text

2. Have Korean fonts and character set installed for proper displaying of translated

text messages

3. Be capable of running J2ME applications (for client server communication)

The phone chosen for this project in New Zealand was the Toshiba 803T which is an

international release of a Japanese capable cellular phone from Toshiba. It is J2ME

capable and translated messages can be viewed using a J2ME application known as iCJK

Mail which is capable of interpreting Chinese, Japanese and Korean text.

 21

Fig 9. The Toshiba 803T, used for this project [7]

If this project was conducted again in the future, it would definitely be more appropriate

to use a phone such as Samsung’s Real World Phone, the SCH-V920 which is designed

for use anywhere and is automatically capable of recognizing both Japanese and Korean

character sets.

3.2.2 Software

Several programming languages were used in this project. Firstly for trialling the general

concepts of how the translator would work, Matlab was used as it has a nice developer

environment without complex coding requirements to achieve simple tasks. Shortly after

this, when the general translation concept was deemed to work, J2SE (Java 2 Standard

Edition) was used. J2SE has multilingual support, and is a complex and powerful script

enabling class design and the use of object orientated programming. In addition to J2SE,

MySQL version 5.0 was the database of choice, as there is a lot of support available for

Java scripted software that interacts with MySQL. To note for this project the JDBC

(Java Database Connector) was used to interact with the database and it is also available

with the MySQL package.

The translator written in J2SE, the cellular phone now needed to communicate with the

server. The application written for the cellular phone to communicate with the server

was scripted in J2ME (Java 2 Micro Edition). This version of Java script is a minimised

version of Java that is composed together in consideration of the limited processing and

memory power a cellular phone has.

 22

The overall implementation of this project resulted in the J2ME application compiled by

the Wireless Development Toolkit into a JAR file and placed onto the Toshiba 803T

cellular phone. The translation application scripted in J2SE was compiled into a servlet

using Apache Tomcat Server in order for it respond to any communicated requests

coming from the cellular phone. To simulate the whole project functioning, a phone

emulator from the Wireless Development Toolkit was used to launch the J2ME

application and Apache Tomcat Server was used to act as the virtual server holding the

J2SE application which responded to any requests.

Fig 10. Unicode phone emulator simulating the J2ME application (English interface)

 23

3.2.3 Customer Access

When Japanese citizens travel to Korea, they have the option of acquiring a cellular

phone at the airport that they can use in Korea that is still linked to their respective

cellular phone account in Japan. They can apply for it online before they enter the

country. This project, in a sense is an add-on module to this. The project will equip a

Japanese person at their departing or arriving terminal to Korea with a cellular phone that

is capable of Japanese to Korean translation of text. Not only will they receive a

translation in Korean, they can also receive other add on services such as text and voiced

pronunciation of the translation; all selectable options when they order their cellular

phone. The service is there for anybody to use, the J2ME application can even be spread

to other phones. However only those who have paid for the service will be able to

activate it via their cellular phone. This solves the problem of the Japanese citizen still

desiring to use the service without paying the due charges to their account. Customers

have the option of paying per each translated text message of 80 characters, or on a

weekly/monthly basis. Refer to the survey later in the results section to investigate the

possible prices for this service as expected by Japanese citizens.

 24

4 Results

4.1 Trialling of the Concept

The original algorithm was built in Matlab and was able to work at a high degree of

accuracy for text translation of an intermediate level. The purpose of first building the

design of the algorithm in Matlab was to trial the concept and see if it worked efficiently

and accurately to develop further. Keep in mind two things regarding this Matlab trial;

the algorithm only consisted of the basic idea of what the algorithm has evolved into now,

Fish bone Composition was not yet established, and the grammar string involved was

treated merely as a bone translation. Secondly since the program ran in Matlab, the text

translation was performed in a Romanized version of the Japanese and Korean character

set. Matlab was chosen for the trialling of the concept as is it a good platform for testing

algorithms in their early stages. Matlab does not need extensive declaration of variables

and development of classes which can be demanded by more complex programming

languages which are more object-orientated.

As for the trial itself, a random sample of 20 Japanese sentences derived from a Grammar

Function database of approximately 100 entries, on average 85% (17 out of 20) were able

to be translated correctly. The sample sentences are generated by using reverse Grammar

Functions and relevant word types place in suitable parts of the sentences at random. For

example, the grammar string ‘＿は＿に＿と＿。’ can have a variety of words placed

into the gaps to generate several sample sentences of this structure. Typically these could

be:

コンサート はははは 東京 にににに ある とととと 思います 。。。。

(I think the concert is in Tokyo.)

私 はははは 町 にににに 行く とととと 言いました 。。。。

(I said I will go to town.)

 25

Incorrect translations usually happen because a character within a word can be mistaken

as a particle or even a conjunction and added to the created Grammar String. This in turn

causes one of the three mistakes which are classified accordingly below in table 1.

Table 2. Error Classification

Particle Confusion and Conjunction Confusion occur when particle or conjunction

characters are found in a word which causes the wrong Grammar Function to be chosen,

and Grammar String Invalid occurs when a Grammar String that does not exist in the

Grammar Function Dictionary is created.

The 15% error rate can almost all be accounted for as the character sets of the Japanese

and Korean language been Romanized was why Particles and Conjunctions ended up

being confused. In later development of the concept, Unicode was used making it

impossible of characters to be confused as there is a unique binary code for every single

character in the Japanese and Korean character set. This however did by no means

achieve perfect translation. Something that the above table does not represent is the new

kind of error that persisted to become a problem as sentences became more complex.

These were logical errors, which were made because words were used incorrectly,

executing some very unnatural translations in regard to word and grammar composition,

in particular idioms and complex grammar use were not at all translatable. Finally, in

spite of overcoming grammatical errors to only encounter many logical errors, the trial

was a success. The general concept of the translator did work and further development to

overcome the logical errors was possible as can be seen later.

Test Number Case #1:

Particle Confusion

Case #2:

Conjunction

Confusion

Case #3:

Grammar String

Invalid

Test #1 1 0 1

Test #2 1 1 1

Test #3 1 0 2

 26

4.2 Performance Report

4.2.1 Dexterity

The translator’s dexterity is its key strength above any other aspects. The Fish Bone

Composition which built upon a Spine, Bones, Muscles and even Organs in future

development sources from Words and then is mapped out finally with the blueprint of the

Grammar Skeleton, making a high degree of translation accuracy obtainable. Let’s now

go through some snippets of the algorithm to truly see the translator’s remarkable

dexterity.

Word Tagging

Word Tagging was indeed one of the principle methods of overcoming logical errors in

translation. Treating the word as an object and tagging it with various properties can

allow it to be treated properly in a sentence, where certain conventional rules may apply.

Take for instance this simple example:

The particle “で” in Japanese is used to represent a) a way of doing something or b) a

place something is done at. However in Korean there are two totally different particles to

represent these two situations, ‘(으)로’ or ‘에서’.

バスでででで行きました。

I went by bus.

버스로로로로 갔습니다.

図書館でででで勉強しました。

I studied in the Library.

도서관에서에서에서에서 공부했습니다.

 27

Using this predefined method from the Support Class Rule Gate, the previously described

problem can be solved so there is no confusion between the two possible particles and a

logical error can be avoided.

 // Determines whether particle 에서 or 로 is required

 public String eseoOrRo(Word word) {

 if (word.getNounType() == "Location") {

 Result = word.getKorWord() + "에서";

 } else {

 if (word.getPachimInd() == 1) {

 Result = word.getKorWord() + "으로";

 } else {

 Result = word.getKorWord() + "로";

 }

 }

 return Result;

 }

Notice how the Word Class variable entered into the method is called upon its properties

to make decisions. If the word is a Location, then ‘에서’ is concatenated, if the word is

not then ‘(으)로’ is concatenated. Notice also that the character ‘으’ is added depending

on whether there is a Pachim present for the noun.

 28

Fish Bone Composition

Here is a snippet of code for the Procedure Class Translate. It performs the Bone

translation, known as case 7 for when the grammar string "V-N-は A-". The following

grammar string represents a Verb Modified Noun + Particle + Adjective.

case 7: // "V-N-は A-"

 Output[sentNum] =

WR[sentNum][click].getKorWord();

 Output[sentNum] = Output[sentNum]

 + RG.unOrNun(WR[sentNum][click+1]);

 Output[sentNum] = Output[sentNum]

+ RG.adjEnd(WR[sentNum][click+2],

Integer.valueOf(mIndex.charAt(co

unt)));

 click = click + 3;

 System.out.println(Output[sentNum]);

 break;

Notice how these words are pulled from the WR (Word Register) in their designated order

using the variable click. Click is used to identify the required words for the Bone being

translated, while also taking into account the Bones that have already been translated.

This prevents the use of the same words in each Bone and gives the translator the ability

to translate multiple Bones for each sentence. Which of course is required if one wishes

to construct a Fish Bone Composed Translation. The second important aspect to note is

once Words are pulled from the WR, the Korean word can be obtained using the method

getKorWord(), and if needs be, the Support Class Rule Gate also has its methods invoked

inputting the Container Class Word as the operand to perform what ever modification is

required to remain in the conventional rules of the Korean language. Each time an

operation is performed on a word and a particle is added to it, it is concatenated to the

final Output array and referenced to the variable sentNum (Sentence Number). The very

last word in every Bone is modified according to the variable mIndex (muscle index

 29

number). This alteration is done so the translated Bone can be attached appropriately to

the Grammar Spine of the index.

Following the last word been modified, such methods such as developVALink() below are

used to concatenate any further grammatical information which is required for the Bones

particular position in the Sentence Spine. Here when case 2 is chosen, the modified

Adjective which is the last word in the Bone, now has the character ‘기’ is also

concatenated to it.

// Develops a Muscle link of Bone to Spine

 public String developVALink(int linkType, String linkValue)

{

 String VALink = null;

 switch (linkType) {

 case 2:

 VALink = linkValue + "기 ";

 break;

…………

……………………..

……………………………………………Other Muscle Link cases omitted

 }

 return VALink;

 }

 30

This last snippet of code shown below is the actual function invoked to translate the

sentence, which in other words is the method which composes the Fish Bone Skeleton.

The Bone we have dealt with up to now is the first Bone that is concatenated to the

Sentence Spine in case 1. Before the conjunction ‘ 때문에 ’ for any verb or adjective the

‘기’ form of that verb or adjective must be used. Since the earlier code prepared the end

of the Bone word which happened to be an Adjective, which then went on to be

concatenated (muscle linked) to ‘기’, in this translate code, we simply have to

concatenate BonesOutput[0], which contains the prepared Bone and Muscle Link to

‘ 때문에 ’. Further BoneOutputs are retrieved and muscle linked to the Sentence Spine,

altogether completing the FinalOutput, the Fish Bone Composed Translation,

abbreviated as the FBCT

 public String[] translate(Word[][] WR, GrammarSkeleton[]

GSR) {

 for (int count = 0; count < 2; count++) {

 BonesOutput = translateBones(WR,

GSR[count].getBoneIndices(),

 count, GSR[count].getMuscleIndex());

 int SpineIndex = GSR[count].getSpineIndex();

 switch (SpineIndex) {

 case 1: // "-から-。"

 System.out.println("spine 1 chosen");

FinalOutput[count] = BonesOutput[0] +

" 때문에 " + BonesOutput[1];

 break;

…………………..

………………………

………………………………….Other Sentence Spine cases omitted

 }

 return FinalOutput;

 }

 31

4.2.2 Speed

The speed of the translator is relatively fast, as a translation can be executed in real time

without the user waiting impatiently. However, true understanding of the completed

model’s speed is still largely unknown. This is due to many reasons, such as unknown

message length (1 – 80 characters) or the translator’s database not yet being fully

completed, which can incur not yet known time penalties on translation. This of course

can be overcome by efficient searching and referencing of data within the database, but

of course in spite of all this, until the translator has been fully completed to handle the

full complexity of the Japanese and Korean language, definite time values for a

translation can not be given. The incomplete model in reference to this report is capable

of translating an intermediate level of Korean is able to execute a translation of

approximately 80 characters in length almost instantly in the blink of an eye. So there is

no extreme need to worry at this point of the translator’s ability to not be able to perform

in real time.

4.2.3 Versatility

Versatility deals with how easily the translator is updated in consideration of how

dynamic or fixed parameters of the algorithm are. At this point in time the parameters

have rather fixed values, meaning several changes can also be needed within different

parts of the algorithm upon making a change to one of the key parameters. It is not a

serious hassle as the algorithm is still in its development stage, however if this translator

was to become a commercialised service, then overhead algorithms to update the

algorithms key parameters when an update is made are necessary, thus making

parameters passable between classes and relieving the person updating the algorithm of

any further duties. One more suggestion on this subject, further work could be done on

the Procedure Class Sentence Strip, so it could identify, based on the text it analyzed, the

minimal parameter values required when carrying out the execution of the rest of the

algorithm which involves all the classes that follow. This would eliminate empty register

spaces and unnecessary execution of loops which as a result consume more processor

time and memory to perform the same original task.

 32

4.3 Market Analysis

4.3.1 Survey Method

Within the host city of this research, Palmerston North New Zealand, 60 Japanese

citizens took part in a ten question survey to gauge the potential market of this

Translation service. A much larger scale market analysis should of course be conducted

in Japan to really gain true insight into how much potential this project has, however this

brief market analysis conducted here in Palmerston North is capable of demonstrating

whether the project should be further continued. The ten questions delve into: if such a

translator is needed, the pricing that should be associated with it, how it should be

implemented, and if the market will continue to exist in the future, and so forth. The

survey was conducted in Japanese eliminate possibilities of subjects misunderstanding

the survey questions.

A majority of target subjects for the survey were University students from either Massey

University English Learning Centre or International Pacific College in Palmerston North.

This is not a good representation of the Japanese population; however the opinion of the

subjects does carry a heavy weight, as they have come to New Zealand and are non

native speakers of English. Due to this fact they can really give insight into whether they

would find a text translator in their cellular phone necessary in their everyday life. Also

one should take into consideration when interpreting this data that the subject Japanese

citizens are already overseas, therefore they may feel more confident about associating

with speakers of another language with little knowledge of that language. Citizens of

Japan who have never experienced this situation will most probably feel even more

inclined than the subjects surveyed to use the Translator put forward in this project.

4.3.2 Survey Analysis

This survey analysis takes you through each question individually to assess its

importance regarding the project. Included also are graphs to help you visually see the

data to draw your own conclusions. Lastly, the final results of the survey can be viewed

in both English and Japanese in the Appendix if one would like to look deeper into the

facts.

 33

What are you overall thoughts on the service described?

Poor

2%

Average

25%

Good

43%

Excellent

30%

Fig 11. Pie graph representing thoughts on the service of those surveyed

From Figure 10, it can be seen that at least 73% of the surveyed subjects feel positively

towards the general idea of the project, regarding it as Excellent or Good. On the other

hand 27% feel the project could not benefit them to any substantial extent and have

regarded the general idea of the project as either Average or Poor.

 34

If you were travelling to Korea would you be interested in using this

service?

No

7%

Maybe

15%

Most likely

50%

Yes

28%

Fig 12. Pie graph representing interest in using the service of those surveyed

From Figure 11, a majority of Japanese citizens feel they could make use of the translator

if they were travelling to Korea. 28% even answer that they would definitely use this

service if it were provided. This is a very positive result for the project as Japanese

citizens by far are the biggest market for the tourism industry of Korea. Effective

marketing of the translator could really see some good returns.

 35

What would you consider as the most important factors in choosing this

product?

Speed of

Service

19%

Software's

Ease of Use

18%

Translation

Accuracy

27%

Convenience

7%

Price

29%

Fig 13. Pie graph representing consideration of most important factors of those surveyed

As can be seen in Figure 12, Translation Accuracy and Price were the most significant

sell factors associated with the product. Following that the Speed of Service and the

Software’s Ease of Use trailed equally behind. General Convenience of having the

product implemented in a cellular phone was not regarded as very important in the

presence of other factors. However the survey perhaps did not stress enough that having

the product incorporated into the cellular phone was a key part to the product

implementation. As it is an add-on module to the Cellular phone offered at Korean

airports upon entry to Korea. However this perspective is of someone who is building the

device rather than using it.

 36

What extra features would you find most useful in this product?

15

27

13
7

29

17

5

8

5 7

19 28

11 9

23
17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1st 2nd 3rd 4th

Rank

S
h

a
re

 o
f

R
a

n
k

 P
o

s
it

io
n

Sending of Text
Translation to
another Cellular
Phone

Self Learning
Software

Speech
Pronunciation

Text Pronunciation

Fig 14. Representation of favoured add-on features of those surveyed

Subjects of the survey were asked to rank the 4 mentioned add-on features as how

important they consider them for the translation service. Not surprisingly the Speech

Pronunciation Service easily took first position. This is a service where a synthesized

voice file is prepared with the text during translation, and the user can simply play back

the Japanese to Korean translation as a sound file as they desire. Second was Text

Pronunciation, which gives the user the chance to pronounce the translated text by using

Japanese characters to display it. This of course provides more interaction between the

user and the person who the user is communication with; this in turn making it a some

what a more fun and educational experience, promoting the learning of the Korean

language. Third was the ability to send the translated message to another phone, so long

 37

distance translation communication could be achieved; for instance, if you needed to

explain something to a Korean person who was to assist you from a far away location.

The least favoured add on feature was the Self Learning Software. This is not a bad thing

as Self Learning Software would most likely be the most difficult thing to implement, and

is more or less what Sony tried to achieved with the PSP Talkman. This trend also

suggests that a majority of Japanese citizens do not wish to really learn the Korean

language, but wish to be able to communicate with the Korean people during their stay in

Korea. Therefore any add on features to the project should be designed with this in mind.

 38

If you were to pay for this service, would you prefer to be charged based on

time used or per translation?

Time Used

43%

Per

Translation

57%

Fig 15. Pie graph representing preferred method of payment of those surveyed

Figure 14 shows most Japanese citizens would prefer to pay for the service based on how

many translations they request. This suggests that they would like to have control over

how much they were charged for the service. Even though they feel the need for a

translator they are still not sure to what extent they will use it which is why the payment

per translation option is more favourable. However both options should be available in

the final implementation as they both are desired options for Japanese citizens.

 39

If charged for time used, how much would you expect to pay for one weeks

use?

￥500-1000

44%

￥1001-

1500

43%

￥1501-

2000

13%

Fig 16. Pie graph representing expected payment of weekly use of those surveyed

For this question, the subjects of the survey had the choice of choosing one of the three

price brackets, or listing their own expected price they would expect to be charged. As

can be seen in figure 15, the price bracket of ￥500-1000 and ￥1001-1500 panned out

fairly evenly. From this, it can be fair to say that Japanese citizens could expect to pay

￥1000 per week of use of this translator. Even when concerning the prices suggested by

those who did not select a price bracket, their suggested prices averaged out to be about

￥1000. This further backs up that ￥1000 per week is a reasonable fee.

 40

If charged per translation of one text message (Approximately 80

characters), how much would you expect to pay?

￥5-15

80%

￥16-25

17%

￥26-35

3%

Fig 17. Pie graph representing expected payment of per translation use of those surveyed

As a counterpart to the previous question, the subjects of the survey had the choice of

choosing one of the three price brackets, or listing their own expected price they would

expect to be charged. A majority felt the very cheapest option would be the most they

would be expected to pay for such a service. This could be due to the fact the standard

pricing of a normal text message in Japan is usually only ￥1 or less. In consideration of

the previous two questions, the fees implemented for such a translation system should be

considered carefully to capture the both types of users; those that are unsure how much

they will use the translation service (per translation charged) and those who intend to rely

on it a great deal (weekly charged).

 41

Do you intend to travel to Korea in the near future? If yes, for what

purpose?

0

10

20

30

40

50

60

No Yes -

Business

Yes -

Education

Yes -

Travel

Yes -

Other

Purpose of Visit

N
u

m
b

e
r

o
f

S
u

b
je

c
ts

Fig 18. Bar graph representing the travel intentions of those surveyed

This question surmounted surprising but welcome results. Almost all the subjects of this

survey intend to visit Korea on the basis of travel. This without doubt proves that the

flow of Japanese tourists entering Korea can be expected to continue so the tourism

industry of Korea should gear themselves up to with such ideas delivered by this project

to take advantage of all the possible opportunities that exist. Data from the KTNO

(Korean National Tourism Organization) later shown in this report also matches the

results of this survey, with approximately 80 – 90% of visits to Korea by Japanese

citizens in the months of February to July 2006 being for the purpose of travel. This

information can be accessed by anyone who follows the KNTO website link provided in

the Reference section of this report.

 42

Have you purchased, seen or heard of a similar product?

No

90%

Seen

2%

Heard

8%

Purchased

0%

Fig 19. Pie graph representing similar services that those surveyed have encountered

Most Japanese citizens have never in their lives come across such a service available to

them. Those that had heard or seen of a similar product commented that they had seen or

heard of a similar product that translated Japanese into English or vice versa through the

Newspaper or on Television. However no one stated that they had ever seen, heard or

purchased such a product that was associated with the translation of Japanese to Korean.

 43

Please circle your age group

0

10

20

30

40

50

60

70

18-25 26-33 34-40 41+

Age Group

N
u

m
b

e
r

o
f

S
u

b
je

c
ts

Fig 20. Bar graph representing the age bracket of those surveyed

Last of all to consider is the age group involved in this survey. As mentioned previously,

most who took part were university students, which puts them in the age bracket of 18-25

years of age. This aspect should not be deemed a negative thing though, as this is the

younger part of the Japanese population and a majority of them desire to travel to Korea

at some point in their lives, most probably when they are in a better financial position to

do so.

 44

4.3.3 Market Projections

The following graph and table (Figure 20 & Table 2) illustrate how many arrivals to

Korea in the months between February to July of 2006 were Japanese citizens. It is quite

easy to see that Japan by far is Korea’s biggest market for tourism. (Data obtained from

the Korean National Tourism Organization [6])
F

e
b
ru

a
ry

M
a
rc

h

A
p
ri
l

M
a
y

J
u
n
e

J
u
ly

Japanese Arrivals

0

100,000

200,000

300,000

400,000

500,000

600,000

Month

Arrival

Number

Japanese Arrivals

Total No. of Arrivals

Fig 21. Bar graph representing how many of the total arrivals in Korea are Japanese citizens on a monthly

basis

Japanese
Arrivals

Total No. of
Arrivals

February 177,561 453,524

March 224,445 518,041

April 176,709 539,635

May 197,121 516,238

June 192,604 502,267

July 173,272 498,441

Average 190,285 504,691

Table 3. Arrival data of Japanese citizens and total number of foreigners entering Korea

 45

We can derive some basic estimations of the project’s value without regarding its set up

cost to market and so forth using the data gathered from the Korean National Tourism

Organization and the results of the survey conducted here in New Zealand. The average

number of visitors per month was 190,285. According to the survey 28% of Japanese

would be willing to use the translation service, out of the average visitors per month this

is 53,280 using the translation service. If we assume they would stay for a week and

were to pay the average expected price according to the survey of ￥1000 for the service

on a weekly basis, then this is ￥53,280,000 (450,350 USD) per month generated. If you

include those in the survey who answered Most Likely bringing up the market to 78%

(148,422 customers per month) then this triples this figure again to ￥148,422,000

(1,254,827 USD) generated per month.

These figures are purely potential and do not take in account any variables such as market

competition and if the service is effectively marketed to its true potential. Also it does

not include those who would use the translation service for more than a week (which

would further increase profit, for instance if customers were to use the service for two

weeks instead of only one week we can double our previous calculations of potential

returns). All that should be taken away from this market projection is that there is a

definite market there for this type of translation service so it should be further

investigated into for the benefit of the Korean Tourism industry.

 46

5 Conclusions
The translator focuses on accuracy and portability to achieve ease of commercialization.

So far the translator has achieved a high degree of dexterity for text translation with the

use of Fish Bone Composition; nonetheless continued efforts need to be made in order to

remove the common causes of errors, particularly those that are logical rather than

grammatical.

A majority of errors can be avoided by further by extending the Container Classes

Grammar Skeleton and Word so more information can be provided in regard to their

correct usage and staying with in the conventional rules of the Korean language.

However building Container Classes that store large amounts of data to increase accuracy

has a serious cost on the execution time of the translation. Thus development of dynamic

Container Classes should be the next step to take in this regard. A dynamic Container

Class could be constructed only in respect to what is required from it later in the

translation. It will require some sort of pre-emptive mechanism so the Procedure Class

Sentence Strip could know in advance how to construct the Container Classes. One way

this could be implemented is by first building the Grammar Skeleton class before the

Word classes associated with it. The MLSN and the Bones from the Grammar Skeleton

class could then be found and used as references to figure the data that is required for

each Word class constructed.

Also further improvements could include updating the database to enable the translator to

handle very advanced grammar and word types beyond its current comprehension. To

make the algorithm run more efficiently, in respect to database searching and building of

Container Classes, designing another Support Class called Efficiency is worth

consideration. Methods that are designed in the Efficiency class should be public for all

of the classes in the algorithm to access and run more efficiently, resulting in the

translation execution requiring less processing time. Processing time is something that

must be considered carefully as the translator has not yet been tested under extreme

traffic conditions that would be present if it were to be commercialized. So to better

 47

improve its chances of success in this situation, the scripting of the Support Class

Efficiency should of course be given due consideration.

The Market Analysis showed very positive results and it really encourages further

investigation into the potential market and most appropriate implementation for this

translation service. For the Korean tourism industry, Japan is the single most important

market holding by far the most visitors to Korea every year. In conjunction with the

Korean Wave, which has continued to promote Korea as a popular tourist destination

over Asia, in particular Japan, hence the environment for the development of this

translator is ideal.

The tourism and IT industries of Korea are booming and competitive, this project

provides a service which these two industries can converge on, rippling many direct and

indirect benefits to the Korean economy at several different levels. Further polishing to

the FBCT algorithm simultaneously with its implementation as a service and effective

marketing to the citizens of Japan should see this project take full flight in the near future.

 48

6 References

[1] Gianni Lazzari, Alex Waibel, C. Zong, “Worldwide Ongoing Activities On

Multilingual Speech to Speech Translation”, ITC-irst Sensory Interactive Systems

Division Trento Ital, CMU Interactive Lab Pittsburgh US, National Laboratory of

Pattern Recognition Beijing China.

[2] Jae-Woo Yang, Jun Park “An Experiment on Korean-to-English and Korean-to-

Japanese Spoken Language Translation” Human Interface Department, ETRI, 161

Kajong-dong, Yusung, Taejon, 305-350, Korea.

[3] http://www.sktelecom.com/eng/cyberpr/press/1198073_3738.html

Visited 19/9/2006, article concerning the release of the SCH-V920 Real World Phone

[4] http://www.gamespot.com/psp/puzzle/talkman/review.html
 Visited 10/10/2006, review by GameSpot of the Sony PSP Talkman

[5] www.wikipedia.org
 Visited 13/7/2006, article concerning the Conventional Methods of Translation

[6] http://www.etourkorea.com/jsp/eng/about/research/research01_02_01.jsp
 Visited 17/10/2006, The Korean National Tourism Organization home page, has data

 regarding Immigration Statistics of Korea.

[7] www.toshiba.com
 Visited 14/10/2006, Toshiba’s home page, accessed for phone information

 49

7 Acknowledgements

7.1 People

Supervisors:

Dr. Liyanage De Silva

Mr. Amal Punchihewa

Translation Assistants:

Miss. Ryoko Hoshino

Miss. Mifa Hong

Surveyors:

Miss. Jeung Hwa Kwon

Miss. Seul Hwa Lee

Video Demonstration Actresses:

Miss. Ryoko Hoshino

Miss. Mifa Hong

7.2 Resources

www.developers.sun.com

Resource site for J2SE & J2ME development

www.mysql.org

Resource site for MySQL database development

Japanese Grammar

D. Corder, J. Short, G. Wells, C. Roughan, Heinemann Education, 2001, New Zealand

Resource for development of Translation Logic

Easy to Learn Korean, Vol. 1-6

Sungkyunkwan Language Institute (South Korea)

Resource for development of Translation Logic

 50

8 Appendix

8.1 Survey

The survey consists of two parts. Firstly is the deployed survey which was distributed

and explained in Japanese to the subjects of the survey. The subjects once answering

each of the ten questions could also make a comment regarding the question. Many of

the subjects did this several times throughout the survey giving further insight.

Comments are not included in this report but they were helpful in drawing conclusions in

the Market Analysis. Secondly there are the results which are the total tally of all surveys

combined into one English version. All graphs in the Market Analysis in the report

concerning the survey’s ten questions were derived from this.

 51

8.1.1 Deployed Survey (Japanese Version)

マーケティングマーケティングマーケティングマーケティング研究研究研究研究ののののアンケートアンケートアンケートアンケート

サービスサービスサービスサービス名名名名: 携帯電話携帯電話携帯電話携帯電話ののののメールメールメールメール機能機能機能機能でででで日本語日本語日本語日本語をををを韓国語韓国語韓国語韓国語にににに訳訳訳訳すことすことすことすこと。。。。

サービスサービスサービスサービス部門部門部門部門: 通訳技術通訳技術通訳技術通訳技術

施設施設施設施設: Massey University

Institute of Information Sciences and Technology

 Private Bag 11 222

 Palmerston North

 New Zealand

検査官検査官検査官検査官: Steve Manion, Hannah Kwon, Seulhwa Lee

日付日付日付日付: 8/10/2006

サービスサービスサービスサービス説明説明説明説明:

これはマッセイ大学遠隔通信工学部の卒業論文のためのアンケートです。

私は日本人観光客が韓国に訪れるにあったって、より快適な滞在が出来る

ように、日本語から韓国語の翻訳機能の付いた携帯電話の開発を研究して

います。

この携帯電話は、日本人が韓国に訪れたときに、韓国の空港で携帯電話を

レンタルするか、または事前にオンラインサービスで予約をしておくと、

あなたの日本の携帯電話の電話番号がそのまま韓国でも利用でき、更にオ

プションとして日本語から韓国語の翻訳機能が付いてくるサービスです。

翻訳機能は、韓国語で使用したい単語や長文をメール機能を使い、８０字

以内で日本語で送信すると、韓国語に翻訳されて返信されてくるというシ

ステムです。

 52

ID 質問質問質問質問 選択選択選択選択 コメントコメントコメントコメント

1 上記上記上記上記でででで述述述述べたべたべたべたサービサービサービサービ

ススススについてどうについてどうについてどうについてどう思思思思いいいい

ますかますかますかますか？？？？

良良良良くないくないくないくない

まあまあまあまあまあまあまあまあ

良良良良いいいい

素晴素晴素晴素晴らしいらしいらしいらしい

2 もしもしもしもし、、、、韓国韓国韓国韓国にににに訪訪訪訪れたれたれたれた

らららら、、、、このこのこのこのサービスサービスサービスサービスをををを

使使使使ってみたいですってみたいですってみたいですってみたいです

かかかか？？？？

使使使使いたくないいたくないいたくないいたくない

あまりあまりあまりあまり使使使使いたくないいたくないいたくないいたくない

多分使多分使多分使多分使いたいいたいいたいいたい

使使使使いたいいたいいたいいたい

3 もしもしもしもし、、、、このこのこのこのサービスサービスサービスサービス

をををを使使使使うとしたらうとしたらうとしたらうとしたら、、、、何何何何

がががが一番大切一番大切一番大切一番大切だとだとだとだと思思思思いいいい

ますかますかますかますか？？？？

(３３３３つつつつ選選選選んでんでんでんで下下下下さいさいさいさい)

翻訳翻訳翻訳翻訳するするするする速度速度速度速度

簡単簡単簡単簡単にににに使使使使えることえることえることえること

翻訳能力翻訳能力翻訳能力翻訳能力

便利便利便利便利ささささ

価格価格価格価格

4 このこのこのこのサービスサービスサービスサービスににににオプオプオプオプ

ションションションションがががが必要必要必要必要だとだとだとだと思思思思

いますかいますかいますかいますか？？？？

(必必必必要要要要だとだとだとだと思思思思うううう順番順番順番順番をををを

１１１１～～～～４４４４ででででランクランクランクランク付付付付けけけけ

してしてしてして下下下下さいさいさいさい。。。。)

韓国語韓国語韓国語韓国語のののの読読読読みみみみ方方方方がががが送信送信送信送信されてされてされてされて

くるくるくるくる機能機能機能機能

音声翻訳機能音声翻訳機能音声翻訳機能音声翻訳機能

自己学習自己学習自己学習自己学習ソフトソフトソフトソフト

翻訳翻訳翻訳翻訳メールメールメールメールをををを送送送送れるれるれるれる機能機能機能機能

5 このこのこのこのサービスサービスサービスサービスをををを利用利用利用利用

するにするにするにするに当当当当たってたってたってたって、、、、指指指指

定定定定されたされたされたされた期間期間期間期間でででで支払支払支払支払

うのとうのとうのとうのと、、、、メールメールメールメールのののの数数数数

でででで支払支払支払支払うのとどちらうのとどちらうのとどちらうのとどちら

がががが良良良良いといといといと思思思思いますいますいますいます

かかかか？？？？

指定期間指定期間指定期間指定期間

翻訳翻訳翻訳翻訳メールメールメールメールのののの数数数数

 53

ID 質問質問質問質問 選択選択選択選択 コメントコメントコメントコメント

6 一週間無制限一週間無制限一週間無制限一週間無制限でででで利用利用利用利用

可能可能可能可能ならならならなら、、、、適切適切適切適切なななな値値値値

段段段段はいくらだとはいくらだとはいくらだとはいくらだと思思思思いいいい

ますかますかますかますか？？？？３３３３つのつのつのつの中中中中かかかか

らららら選選選選ぶかぶかぶかぶか、、、、それそれそれそれ以外以外以外以外

のののの場合場合場合場合はははは、、、、適切適切適切適切なななな値値値値

段段段段をををを記入記入記入記入してくださしてくださしてくださしてくださ

いいいい。。。。

￥￥￥￥500-1000

￥￥￥￥1000-1500

￥￥￥￥1500-2000

￥￥￥￥_______（（（（適切適切適切適切なななな値段値段値段値段））））

7 翻訳翻訳翻訳翻訳メールメールメールメール１１１１通通通通なななな

らららら、、、、いくらがいくらがいくらがいくらが適切適切適切適切なななな

値段値段値段値段だとだとだとだと思思思思いますいますいますいます

かかかか？（？（？（？（各翻訳各翻訳各翻訳各翻訳メールメールメールメール

のののの長長長長さがさがさがさが８０８０８０８０字位字位字位字位でででで

すすすす。）。）。）。）３３３３つのつのつのつの中中中中からからからから

選選選選ぶかぶかぶかぶか、、、、それそれそれそれ以外以外以外以外のののの

場合場合場合場合はははは、、、、適切適切適切適切なななな値段値段値段値段

をををを記入記入記入記入してくださしてくださしてくださしてくださ

いいいい。。。。

￥￥￥￥5-15

￥￥￥￥16-25

￥￥￥￥26-35

￥￥￥￥_______（（（（適切適切適切適切なななな値段値段値段値段））））

8 将来韓国将来韓国将来韓国将来韓国にににに行行行行きたいきたいきたいきたい

とととと思思思思っていますかっていますかっていますかっていますか？？？？

そのそのそのその目的目的目的目的はなんですはなんですはなんですはなんです

かかかか？？？？

いいえいいえいいえいいえ

はいはいはいはい – ビジネスビジネスビジネスビジネス

 - 教育教育教育教育

 - 旅行旅行旅行旅行

 - そのそのそのその他他他他

9 このようなこのようなこのようなこのようなサービサービサービサービスススス

をををを買買買買ったりったりったりったり、、、、見見見見たたたた

りりりり、、、、聞聞聞聞いたりしたいたりしたいたりしたいたりした事事事事

がありますかがありますかがありますかがありますか？？？？複数複数複数複数

選択可能選択可能選択可能選択可能ですですですです。。。。

いいえいいえいいえいいえ

買買買買ったことがあるったことがあるったことがあるったことがある

見見見見たことがあるたことがあるたことがあるたことがある

聞聞聞聞いたことがあるいたことがあるいたことがあるいたことがある

10 年齢層年齢層年齢層年齢層をををを○でででで囲囲囲囲んでくんでくんでくんでく

ださいださいださいださい。。。。

18-25 26-33

34-40 41+

 54

8.1.2 Results (English Version)

ID Question Selection Results

1 What are your
overall thoughts on
the service
described?

Poor

Average

Good

Excellent

1

15

26

18

2 If you were
travelling to Korea
would you be
interested in using
this service?

No

Maybe

Most likely

Yes

4

9

30

17

3 What would you
consider as the
most important
factors in choosing
this product?

(Please select
three)

Speed of Service

Ease of Use

Translation Accuracy

Convenience

Price

35

33

49

13

50

4 What extra features
would you find
most useful on this
product?

(Rank in order of
choice, 1 = most
useful)

Text Pronunciation

Speech Pronunciation

Self Learning Software

Sending of Text
Translation to another
Cellular Phone

2nd

1st

4th

3rd

5 If you were to pay
for this service,
would you prefer to
be charged based
on the time used or
per translation?

Time used

Per Translation

26

34

 55

ID Question Selection Response/Comments

6 If charged for time
used, how much
would you expect to
pay for one weeks
use?

￥￥￥￥500-1000

￥￥￥￥1000-1500

￥￥￥￥1500-2000

￥￥￥￥_______

23

23

7

7 If charged per
translation of one text
message
(Approximately 80
characters), how
much would you
expect to pay?

￥￥￥￥5-15

￥￥￥￥16-25

￥￥￥￥26-35

￥￥￥￥_______

48

10

2

8 Do you intend to
travel to Korea in the
near future? If yes, for
what purpose?

No

Yes - Business

 - Education

 - Travel

 - Other

6

2

3

52

1

9 Have you purchased,
seen, or heard of a
similar product?

No

Purchased

Seen

Heard

54

0

1

5

10 Please circle your age
group

18-25 26-33

34-40 41+

59 1

0 0

 56

8.2 FBCT Algorithm (Stand Alone Version)

The algorithm denoted here is the stand alone version scripted in J2SE, which executes

translations locally; by simply placing text files into the algorithm to receive a generated

text file of the translation in return. The algorithm used in the actual communication

protocol is of course slightly different and can be compiled into an independent

deployable servlet where as this version if compiled into a servlet, relies on local input

arguments as variables and so forth. Also appropriate commenting and simplification of

inefficiencies with in the algorithm may be lacking, particular in classes like Sentence

Strip. The algorithm was still in the process of development at the time of this reports

due publication. Future publications regarding this project of course will contain a more

polished documentation of the FBCT algorithm.

The Support Class Dictionary is not listed as it is very large and repetitious in structure,

further more with the classes that are denoted here only specific segments are revealed

and where methods concerning grammar and word manipulation are concerned, only few

are shown to provide examples to the reader. Due to the time and work that has gone into

developing the current library of grammar and word manipulation methods, it is

considered as Intellectual Property. The purpose of revealing segments of the FBCT

algorithm in this appendix is only to provide readers with sufficient resources to help

them understand the internal workings of the software, but not to assist them in any self-

distribution or use of it through copying its source.

 57

8.2.1 Control Class
import java.io.*;

public class JKT {

 public static void main(String[] args) {

 try {

 //Generate required Classes

 Dictionary JKD = new Dictionary();

 RuleGate RG = new RuleGate();

 SentenceStrip SS = new SentenceStrip(JKD);

 JKTranslate JKT = new JKTranslate(RG);

 //Gather source text information

 SS.Strip(“input.txt”);

 GrammarSkeleton[] GSR = SS.getGramSkelReg();

 Word[][] WR = SS.getWordReg();

 //Execute & Write the FBCT to output.txt

 String[] Translation = JKT.translate(WR, GSR);

 DataOutputStream outStream = new DataOutputStream(

 new FileOutputStream("output.txt"));

 for (int count = 0; count < 2; count++) {

 if (Translation[count] != null) {

 outStream.writeUTF(Translation[count]);

 System.out.println(Translation[count]);

 }

 }

 outStream.close();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

}

 58

8.2.2 Sentence Strip Class (Procedure)

import java.io.*;

public class SentenceStrip {

 private Word[][] WR;

 private GrammarSkeleton[] GR;

 public Dictionary DictLink;

 public SentenceStrip(Dictionary dict) {

 WR = new Word[10][10];

 GR = new GrammarSkeleton[10];

 DictLink = dict;

 }

 // Get Word Register

 public Word[][] getWordReg() {

 return WR;

 }

 // Get Grammar Skeleton Register

 public GrammarSkeleton[] getGramSkelReg() {

 return GR;

 }

 // Generate a word

 public Word generateWord(String jWord) {

 Word finalWord = null;

 for (int count = 0; count < 10; count++) {

 if ((jWord.equals(DictLink.JNDict[count][0]))

 | (jWord.equals(DictLink.JNDict[count][1]))) {

 System.out.println("N match!");

 Word builtWord = new Word(jWord, DictLink.KNDict[count][0],

 59

 Integer.valueOf(DictLink.KNDict[count][1]), DictLink.KNDict[count][2]);

 builtWord.setWordType("N");

 System.out.println(builtWord.getKorWord());

 count = 10;

 finalWord = builtWord;

 } else if ((jWord.equals(DictLink.JVADict[count][0]))

 | (jWord.equals(DictLink.JVADict[count][1]))) {

 System.out.println("VA match!");

 int DI = Integer.valueOf(DictLink.JVAData[count][2]);

 Word builtWord = new Word(jWord, DictLink.KVADict[DI][0],

 Integer.valueOf(DictLink.KVADict[DI][3]),

 DictLink.JVAData[count][0], DictLink.JVAData[count][1],

 DictLink.KVADict[DI][0], DictLink.KVADict[DI][2],

 DictLink.KVADict[DI][1], DictLink.KVADict[DI][4],

 DictLink.KVADict[DI][5]);

 System.out.println(builtWord.getKorWord());

 count = 10;

 finalWord = builtWord;

 }

 }

 return finalWord;

 }

 // Generate a Grammar Skeleton

 public GrammarSkeleton generateGramSkel(String spine, String[] bones) {

 GrammarSkeleton GS = new GrammarSkeleton(spine, bones);

 GS.setSpineIndex((findSpineGI(spine) - 1));

 System.out.println(findSpineGI(spine));

 GS.setMuscleIndex(DictLink.MDict[(findSpineGI(spine) - 1)]);

 for (int count = 0; count < 10; count++) {

 if (bones[count] != null) {

 GS.setBoneIndex(count, findBoneGI(bones[count]));

 }

 }

 return GS;

 }

 public int findSpineGI(String GS) {

 60

 int BoneGI = 0;

 for (int count = 0; count < 8; count++) {

 if (GS.equals(DictLink.SDict[count])) {

 BoneGI = count + 1;

 count = 7;

 }

 }

 return BoneGI;

 }

 public int findBoneGI(String GS) {

 int BoneGI = 0;

 for (int count = 0; count < 8; count++) {

 if (GS.equals(DictLink.BDict[count])) {

 BoneGI = count + 1;

 count = 7;

 }

 }

 return BoneGI;

 }

 public void Strip(String inputFile) {

 try {

 StringBuffer KeyBuffer = new StringBuffer(); // Primary Buffer to catch the sentence

 StringBuffer SGSBuffer = new StringBuffer(); // Spine Grammar String Buffer

 StringBuffer BGSBuffer = new StringBuffer(); // Bone Grammar String Buffer

 StringBuffer CWBuffer = new StringBuffer(); // Check Word Buffer

 StringBuffer WBBuffer = new StringBuffer(); // Word Build Buffer

 StringBuffer CPBuffer = new StringBuffer(); // Check Particle Buffer

 StringBuffer PBBuffer = new StringBuffer(); // Particle Build Buffer

 StringBuffer RBuffer = new StringBuffer(); // Stores word possibly

 // mistaken for a particle

 InputStream is = null;

 InputStreamReader isr1 = null;

 is = SentenceStrip.class.getResourceAsStream(inputFile);

 if (is == null)

 throw new Exception("File Does Not Exist");

 61

 isr1 = new InputStreamReader(is, "UTF8");

 int ch;

 int chp = 0;

 int wdp = 0;

 int intlen = 0;

 int len1 = 0;

 int len2 = 0;

 int len3 = 0;

 int len4 = 0;

 int partSize = 0;

 int sentNum = 0;

 int boneCount = 0;

 boolean Wok = true;

 boolean Pok = false;

 boolean recoverChar = false;

 boolean secondWord = false;

 boolean recoverPart = false;

 String WordTag = null;

 String PExistanceCheck = null;

 String ResWord = null;

 String[] BoneCollector = null;

 while ((ch = isr1.read()) > -1) {

 KeyBuffer.append((char) ch);

 if ((chp != 0) & (Wok == true) & (Pok == false)

 & (secondWord == false)) {

 CPBuffer = new StringBuffer();

 PBBuffer = new StringBuffer();

 CWBuffer.append((char) ch);

 partSize = 0;

 len2 = 0;

 len1++;

 System.out.println("character appended to CWBuffer");

 String checkWord = CWBuffer.toString();

 for (int count = 0; count < 10; count++) {

 if ((checkWord.regionMatches(0,

 62

 DictLink.JNDict[count][0], 0, len1))

 | (checkWord.regionMatches(0,

 DictLink.JNDict[count][1], 0, len1))) {

 Wok = true;

 Pok = false;

 System.out.println("match found");

 WBBuffer.append((char) ch);

 WordTag = "N-";

 count = 10;

 } else if ((checkWord.regionMatches(0,

 DictLink.JVADict[count][0], 0, len1))

 | (checkWord.regionMatches(0,

 DictLink.JVADict[count][1], 0, len1))) {

 Wok = true;

 Pok = false;

 System.out.println("match found");

 WBBuffer.append((char) ch);

 WordTag = DictLink.JVAData[count][0];

 count = 10;

 } else {

 Wok = false;

 Pok = true;

 System.out.println("match not found");

 }

 }

 if ((chp != 0) & (Pok == true) & (Wok == false)) {

 String word = WBBuffer.toString();

 WR[sentNum][wdp] = generateWord(word);

 System.out.println(word);

 word = null;

 SGSBuffer.append(WordTag);

 BGSBuffer.append(WordTag);

 System.out

 .println("Tag appended to SGSBuffer and BGSBuffer");

 WordTag = null;

 CWBuffer = new StringBuffer();

 WBBuffer = new StringBuffer();

 wdp++;

 63

 len1 = 0;

 }

 }

 if ((chp != 0) & (Pok == true) & (Wok == false)) { // &((chCatch

 CPBuffer.append((char) ch);

 len2++;

 System.out.println("character appended to CPBuffer");

 String checkParticle = CPBuffer.toString();

 System.out.println(checkParticle);

 {

 for (int count = 0; count < 10; count++) {

 if ((checkParticle.regionMatches(0,

 DictLink.CDict[count][0], 0, len2))

 | (checkParticle.regionMatches(0,

 DictLink.CDict[count][1], 0, len2))) {

 Wok = false;

 Pok = true;

 System.out.println("p match found");

 PBBuffer.append((char) ch);

 WBBuffer.append((char) ch);

 RBuffer.append((char) ch);

 partSize++;

 recoverChar = false;

 // if (partSize < 2){

 // }

 count = 10;

 } else {

 Wok = true;

 Pok = false;

 recoverChar = true;

 System.out.println("p match not found");

 }

 }

 if (Pok == false) {

 64

 RBuffer.append((char) ch);

 }

 }

 if (recoverChar) {

 boolean isParticle = false;

 PExistanceCheck = PBBuffer.toString();

 ResWord = RBuffer.toString();

 System.out.println("it is" + PExistanceCheck);

 for (int count1 = 0; count1 < 10; count1++) {

 for (int count2 = 0; count2 < 2; count2++) {

 if (DictLink.CDict[count1][count2]

 .equals(PExistanceCheck)) {

 isParticle = true;

 if (DictLink.CDict[count1][2].equals("B")) {

 BGSBuffer

 .append(DictLink.CDict[count1][count2]);

 } else {

 BoneCollector[boneCount] = BGSBuffer

 .toString();

 BGSBuffer = new StringBuffer();

 boneCount = boneCount + 1;

 }

 }

 }

 }

 if (isParticle) {

 recoverChar = true;

 System.out.println("Particle is legitimate >>>>>");

 RBuffer = new StringBuffer();

 WBBuffer = new StringBuffer();

 } else {

 secondWord = true;

 recoverChar = false;

 len3 = ResWord.length();

 intlen = len3;

 65

 System.out.println("length is" + len3);

 System.out

 .println("Particle confusion, search for second

word!");

 }

 }

 }

 if (secondWord) {

 if (intlen != len3) {

 RBuffer.append((char) ch);

 ResWord = RBuffer.toString();

 }

 System.out.println(ResWord);

 for (int count = 0; count < 10; count++) {

 if ((ResWord.regionMatches(0,

 DictLink.JNDict[count][0], 0, len3))

 | (ResWord.regionMatches(0,

 DictLink.JNDict[count][1], 0, len3))) {

 Wok = true;

 Pok = false;

 secondWord = true;

 System.out.println("second word match found N");

 WBBuffer.append((char) ch);

 WordTag = "N-";

 count = 10;

 } else if ((ResWord.regionMatches(0,

 DictLink.JVADict[count][0], 0, len3))

 | (ResWord.regionMatches(0,

 DictLink.JVADict[count][1], 0, len3))) {

 Wok = true;

 Pok = false;

 secondWord = true;

 System.out.println("second word match found V/A");

 WBBuffer.append((char) ch);

 WordTag = DictLink.JVAData[count][0];

 66

 count = 10;

 } else {

 Wok = false;

 Pok = true;

 secondWord = false;

 System.out.println("second word match not found");

 }

 }

 if ((chp != 0) & (Pok == true) & (Wok == false)

 & (secondWord == false)) {

 String word = WBBuffer.toString();

 WR[sentNum][wdp] = generateWord(word);

 System.out.println(word);

 SGSBuffer.append(WordTag);

 BGSBuffer.append(WordTag);

 System.out

 .println("Tag appended to GSBuffer and BGSBuffer");

 word = null;

 CWBuffer = new StringBuffer();

 WBBuffer = new StringBuffer();

 RBuffer = new StringBuffer();

 CPBuffer = new StringBuffer();

 wdp++;

 intlen = 0;

 partSize = 0;

 System.out.print("Second word inside array");

 recoverPart = true;

 }

 len3++;

 }

 if (recoverPart) {

 {

 len4++;

 CPBuffer.append((char) ch);

 String checkParticle = CPBuffer.toString();

 for (int count = 0; count < 10; count++) {

 if ((checkParticle.regionMatches(0,

 67

 DictLink.CDict[count][0], 0, len4))

 | (checkParticle.regionMatches(0,

 DictLink.CDict[count][1], 0, len4))) {

 Wok = false;

 Pok = true;

 System.out.println("p match found");

 PBBuffer.append((char) ch);

 partSize++;

 count = 10;

 } else {

 Wok = true;

 Pok = false;

 System.out.println("p match not found");

 }

 }

 }

 recoverPart = false;

 len2 = 1;

 }

 if (recoverChar) {

 len3 = 0;

 String particle = PBBuffer.toString();

 SGSBuffer.append(particle);

 BGSBuffer.append(particle);

 System.out.println("character appended to GSBuffer");

 // WR[sentNum][0] = SGSBuffer.toString();

 if (particle.equals("。")) {

 int endPoint = BGSBuffer.indexOf("。");
 BGSBuffer.deleteCharAt(endPoint);

 BoneCollector[boneCount] = BGSBuffer.toString();

 GR[sentNum] = generateGramSkel(SGSBuffer.toString(),

 BoneCollector);

 sentNum++;

 System.out.println("++ Sentence Complete ++");

 CWBuffer = new StringBuffer();

 WBBuffer = new StringBuffer();

 CPBuffer = new StringBuffer();

 68

 PBBuffer = new StringBuffer();

 SGSBuffer = new StringBuffer();

 BGSBuffer = new StringBuffer();

 RBuffer = new StringBuffer();

 }

 len1++;

 System.out.println("dumped character appended to CWBuffer");

 CWBuffer.append((char) ch);

 String checkWord = CWBuffer.toString();

 System.out.println(checkWord);

 for (int count = 0; count < 10; count++) {

 if ((checkWord.regionMatches(0,

 DictLink.JNDict[count][0], 0, len1))

 | (checkWord.regionMatches(0,

 DictLink.JNDict[count][1], 0, len1))) {

 Wok = true;

 Pok = false;

 System.out.println("match found");

 WBBuffer.append((char) ch);

 WordTag = "N-";

 count = 10;

 } else if ((checkWord.regionMatches(0,

 DictLink.JVADict[count][0], 0, len1))

 | (checkWord.regionMatches(0,

 DictLink.JVADict[count][1], 0, len1))) {

 Wok = true;

 Pok = false;

 System.out.println("match found");

 WBBuffer.append((char) ch);

 WordTag = DictLink.JVAData[count][0];

 count = 10;

 } else {

 Wok = false;

 Pok = true;

 System.out.println("match not found");

 }

 }

 recoverChar = false;

 69

 }

 chp++;

 }

 String particle = PBBuffer.toString();

 SGSBuffer.append(particle);

 System.out.println("last character appended to GSBuffer");

 System.out.println("++ Sentence Complete ++");

 if (isr1 != null)

 isr1.close();

 String line = KeyBuffer.toString();

 System.out.println(line);

 DataOutputStream outStream = new DataOutputStream(

 new FileOutputStream("SSoutput.doc"));

 outStream.writeUTF(line);

 for (int count1 = 0; count1 <= sentNum; count1++) {

 for (int count2 = 0; count2 < wdp; count2++) {

 String outputArt = WR[count1][count2].getJapWord();

 if (outputArt != null) {

 System.out.println(WR[count1][count2].getJapWord());

 outStream.writeUTF(WR[count1][count2].getJapWord());

 }

 }

 }

 outStream.close();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

}

 70

8.2.3 Word Class (Container)
public class Word {

 String japWord;

 String korWord;

 String wordType;

 int pachimInd;

 String nounType;

 String wordTense;

 String verbAdjStem;

 String verbAdjPast;

 String verbAdjVol;

 String verbAdjBform;

 String verbAdjNform;

…………….

………………………..

…………………………………... further fields omitted

 // Constructor for a Noun

 public Word(String jWord, String kWord, int pInd, String nType) {

 japWord = jWord;

 korWord = kWord;

 pachimInd = pInd;

 nounType = nType;

 wordType = null;

 71

 wordTense = null;

 verbAdjStem = null;

 verbAdjPast = null;

 verbAdjVol = null;

 verbAdjBform = null;

 verbAdjNform = null;

…………….

………………………..

…………………………………... further variables omitted

 }

 // Constructor for a Verb/Adjective

 public Word(String jWord, String kWord, int pInd, String wType,

 String wTense, String stem, String past, String vol, String bform,

 String nform) {

 japWord = jWord;

 korWord = kWord;

 pachimInd = pInd;

 wordType = wType;

 wordTense = wTense;

 verbAdjStem = stem;

 verbAdjPast = past;

 verbAdjVol = vol;

 verbAdjBform = bform;

 verbAdjNform = nform;

…………….

………………………..

…………………………………... further variables omitted

 }

 // Returns the Japanese word

 public String getJapWord() {

 return japWord;

 72

 }

 // Returns the Korean word

 public String getKorWord() {

 return korWord;

 }

 // Returns the word type

 public String getWordType() {

 return wordType;

 }

 // Returns the word tense

 public String getWordTense() {

 return wordTense;

 }

 // Indicates if there is pachim or not

 public int getPachimInd() {

 return pachimInd;

 }

 // Returns Noun Type

 public String getNounType() {

 return nounType;

 }

 // Returns the Verb/Adjective stem

 public String getVAStem() {

 return verbAdjStem;

 }

 // Returns the Verb/Adjective past form

 public String getVAPast() {

 return verbAdjPast;

 }

 73

 // Returns the Verb/Adjective volitional form

 public String getVAVol() {

 return verbAdjVol;

 }

 // Returns the Verb/Adjective ㅂ-form
 public String getVABform() {

 return verbAdjBform;

 }

 // Returns the Verb/Adjective ㄴ-form
 public String getVANform() {

 return verbAdjNform;

 }

 // Sets the word type

 public void setWordType(String wType) {

 wordType = wType;

 }

…………….

………………………..

…………………………………... further methods omitted

}

 74

8.2.4 Grammar Skeleton (Container)
public class GrammarSkeleton {

 String Spine;

 int SpineGI;

 String[] Bones;

 int[] BonesGI;

 String MuscleGI;

 // Constructor of Grammar Skeleton

 public GrammarSkeleton(String spine, String[] bones) {

 Spine = spine;

 Bones = bones;

 }

 // Set the Spine Grammar Index

 public void setSpineIndex(int sIndex) {

 SpineGI = sIndex;

 }

 // Get the Spine Grammar Index

 public int getSpineIndex() {

 return SpineGI;

 }

 // Set a Bone Grammar Index according to its order in the sentence

 public void setBoneIndex(int boneNumber, int bIndex) {

 BonesGI[boneNumber] = bIndex;

 }

 // Get a Bone Grammar Index according to its order in the sentence

 public int getBoneIndex(int boneNumber) {

 return BonesGI[boneNumber];

 75

 }

 // Get Bone Grammar Indices

 public int[] getBoneIndices() {

 return BonesGI;

 }

 // Set Muscle Index

 public void setMuscleIndex(String mIndex) {

 MuscleGI = mIndex;

 }

 // Get Muscle Index

 public String getMuscleIndex() {

 return MuscleGI;

 }

 // Returns the Spine

 public String getSpine() {

 return Spine;

 }

 // Returns a Bone according to its order in the sentence

 public String getBone(int boneNumber) {

 return Bones[boneNumber];

 }

}

 76

8.2.5 Rule Gate (Support)
public class RuleGate {

 // Feilds

 private String Result; // Result of passing through a Rule Gate

 // Constructor

 public RuleGate() {

 Result = null;

 }

 // Determines whether particle 은 or 는 is required
 public String unOrNun(Word word) {

 if (word.getPachimInd() == 0) {

 Result = word.getKorWord() + "는 ";
 } else {

 Result = word.getKorWord() + "은 ";
 }

 return Result;

 }

 // Determines whether particle 이 or 가 is required
 public String iOrGa(Word word) {

 if (word.getPachimInd() == 0) {

 Result = word.getKorWord() + "가 ";
 } else {

 Result = word.getKorWord() + "이 ";
 }

 return Result;

 }

 // Determines whether particle 에서 or 로 is required

 public String eseoOrRo(Word word) {

 if (word.getNounType() == "Location") {

 Result = word.getKorWord() + "에서";

 } else {

 if (word.getPachimInd() == 1) {

 77

 Result = word.getKorWord() + "으로";

 } else {

 Result = word.getKorWord() + "로";
 }

 }

 return Result;

 }

 // Forms Verb ending

 public String verbEnd(Word word, int link) {

 if (link == 1) {

 if (word.getWordTense() == "PF") {

 if (word.getPachimInd() == 1) {

 Result = word.getVAStem() + "습니다.";

 } else {

 Result = word.getVABform() + "니다.";

 }

 } else if (word.getWordTense() == "PP") {

 if (word.getPachimInd() == 1) {

 Result = word.getVAStem() + "었습니다.";

 } else {

 Result = word.getVAPast() + "습니다.";

 }

 } else if (word.getWordTense() == "CF") {

 Result = word.getVAVol() + ".";

 } else if (word.getWordTense() == "CP") {

 Result = word.getVAPast() + "어.";
 }

 } else {

 if ((word.getWordTense() == "PF") | (word.getWordTense() == "CF")) {

 Result = developVALink(link, word.getVAStem());

 } else {

 Result = developVALink(link, word.getVAPast());

 }

 }

 return Result;

 78

 }

 // Forms an Adjective ending

 public String adjEnd(Word word, int link) {

 if (link == 1) {

 if (word.getWordTense() == "PF") {

 if (word.getPachimInd() == 1) {

 Result = word.getVAStem() + "입니다.";

 } else {

 Result = word.getVABform() + "니다.";

 }

 } else if (word.getWordTense() == "PP") {

 if (word.getPachimInd() == 1) {

 Result = word.getVAStem() + "었습니다.";

 } else {

 Result = word.getVAPast() + "습니다.";

 }

 } else if (word.getWordTense() == "CF") {

 Result = word.getVAVol() + ".";

 } else if (word.getWordTense() == "CP") {

 Result = word.getVAPast() + "어.";
 }

 } else {

 if ((word.getWordTense() == "PF") | (word.getWordTense() == "CF")) {

 Result = developVALink(link, word.getVAStem());

 } else {

 Result = developVALink(link, word.getVAPast());

 }

 }

 return Result;

 }

 // Develops a Muscle link of Bone to Spine

 public String developVALink(int linkType, String linkValue) {

 String VALink = null;

 switch (linkType) {

 79

 case 2:

 VALink = linkValue + "기 ";
 break;

…………….

………………………..

…………………………………... further Muscle Link cases omitted

 default:

 VALink = "-df-";

 break;

 }

 return VALink;

 }

…………….

………………………..

…………………………………... further methods omitted

}

 80

8.2.6 Translate (Procedure)
public class JKTranslate {

 private String[] Output;

 private String[] BonesOutput;

 private String[] FinalOutput;

 private RuleGate RG;

 public JKTranslate(RuleGate rule) {

 FinalOutput = new String[2];

 RG = rule;

 }

 public String[] translate(Word[][] WR, GrammarSkeleton[] GSR) {

 for (int count = 0; count < 2; count++) {

 BonesOutput = translateBones(WR, GSR[count].getBoneIndices(),

 count, GSR[count].getMuscleIndex());

 int SpineIndex = GSR[count].getSpineIndex();

 switch (SpineIndex) {

 case 1: // "-から-。"
 System.out.println("spine 1 chosen");

 FinalOutput[count] = BonesOutput[0] + " 때문에 " + BonesOutput[1];

 System.out.println();

 break;

…………….

………………………..

…………………………………... further Spine cases omitted

 default:

 System.out.println("default spine chosen");

 FinalOutput[count] = "dfs";

 break;

 }

 81

 }

 return FinalOutput;

 }

 public String[] translateBones(Word[][] WR, int[] BGI, int sentNum,

 String mIndex) {

 int click = 0;

 BonesOutput = new String[2];

 for (int count = 0; count < 2; count++) {

 int BoneIndex = BGI[count];

 switch (BoneIndex) {

 case 1: // "N-はV-"
 System.out.println("bone 1 chosen");

 Output[sentNum] = RG.unOrNun(WR[sentNum][click]);

 Output[sentNum] = Output[sentNum]

 + RG.verbEnd(WR[sentNum][click + 1], Integer

 .valueOf(mIndex.charAt(count)));

 click = click + 2;

 System.out.println(Output[sentNum]);

 break;

 case 2: // "N-がV-"
 System.out.println("bone 2 chosen");

 Output[sentNum] = RG.iOrGa(WR[sentNum][click]);

 Output[sentNum] = Output[sentNum]

 + RG.verbEnd(WR[sentNum][click + 1], Integer

 .valueOf(mIndex.charAt(count)));

 click = click + 2;

 System.out.println(Output[sentNum]);

 break;

 case 3: // "N-にV-"
 System.out.println("bone 3 chosen");

 Output[sentNum] = WR[sentNum][click].getKorWord() + "에";

 Output[sentNum] = Output[sentNum]

 + RG.verbEnd(WR[sentNum][click + 1], Integer

 .valueOf(mIndex.charAt(count)));

 82

 click = click + 2;

 System.out.println(Output[sentNum]);

 break;

 case 4: // "N-でV-"
 System.out.println("bone 4 chosen");

 Output[sentNum] = RG.eseoOrRo(WR[sentNum][click]);

 Output[sentNum] = Output[sentNum]

 + RG.verbEnd(WR[sentNum][click + 1], Integer

 .valueOf(mIndex.charAt(count)));

 System.out.println(Output[sentNum]);

 break;

 case 5: // "N-はA-"
 System.out.println("bone 5 chosen");

 Output[sentNum] = RG.unOrNun(WR[sentNum][click]);

 Output[sentNum] = Output[sentNum]

 + RG.adjEnd(WR[sentNum][click + 1], Integer

 .valueOf(mIndex.charAt(count)));

 click = click + 2;

 System.out.println(Output[sentNum]);

 break;

 case 6: // "N-がA-"
 System.out.println("bone 6 chosen");

 Output[sentNum] = RG.iOrGa(WR[sentNum][click]);

 Output[sentNum] = Output[sentNum]

 + RG.adjEnd(WR[sentNum][click + 1], Integer

 .valueOf(mIndex.charAt(count)));

 click = click + 2;

 System.out.println(Output[sentNum]);

 break;

 case 7: // "V-N-はA-"
 System.out.println("bone 7 chosen");

 Output[sentNum] = WR[sentNum][click].getKorWord();

 Output[sentNum] = Output[sentNum]

 + RG.unOrNun(WR[sentNum][click + 1]);

 Output[sentNum] = Output[sentNum]

 + RG.adjEnd(WR[sentNum][click + 2], Integer

 .valueOf(mIndex.charAt(count)));

 83

 click = click + 3;

 System.out.println(Output[sentNum]);

 break;

…………….

………………………..

…………………………………... further Bone cases omitted

 default:

 System.out.println("default bone chosen");

 Output[sentNum] = "dfb";

 break;

 }

 }

 return Output;

 }

}

 84

8.3 FBCT Access Algorithm (Skeletal Version)

This algorithm is scripted in J2ME and is the skeletal version that is compiled and

deployed onto any J2ME supporting cellular phone to give the user access the FBCT

translation service. The skeletal version has no extensive interface structure, user

authentication measures or options including add-on features, it simply performs text

communication with the FBCT servlet that resides on the server. Two classes exist,

however only JKTranslation is predefined as a MIDlet that has a JAD (Java Application

Descriptor) file and a JAR (Java Application Resource) file associated with it, making it a

selectable J2ME program on the cellular phone. Conversely, the HttpHelperConnection

class exists only as a support class which has no JAD or JAR file associated with it.

 85

8.3.1 JKTranslation Class
import java.io.*;

import java.lang.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class JKTranslation extends MIDlet implements CommandListener {

 private static String url = "http://www.workushard.co.nz/JKT";

 private Display display;

 private Command exitCommand = new Command("Exit", Command.EXIT, 2);

 private Command okCommand = new Command("OK", Command.OK, 1);

 private Command backCommand = new Command("Back", Command.BACK, 1);

 private Command selectCommand = new Command("Select", Command.OK, 1);

 private Command translateCommand = new Command("Translate", Command.OK, 1);

 private String[] modes = { "Japanese >> Korean Translation" };

 public TextBox entryForm;

 public List mainMenu;

 public JKTranslation() {}

 protected void destroyApp(boolean unconditional)

 throws MIDletStateChangeException {

 86

 exitMIDlet();

 }

 protected void pauseApp() {

 }

 protected void startApp() throws MIDletStateChangeException {

 if (display == null) {

 // first time called...

 initMIDlet();

 }

 }

 private void initMIDlet() {

 display = Display.getDisplay(this);

 mainMenu = new MainMenu();

 display.setCurrent(mainMenu);

 }

 public void exitMIDlet() {

 notifyDestroyed();

 }

 public void commandAction(Command c, Displayable d) {

 if (c == translateCommand) {

 StatusForm f = new StatusForm(entryForm.getString());

 display.setCurrent(f);

 f.start();

 } else if (c == okCommand) {

 display.setCurrent(entryForm);

 } else if ((d == mainMenu)

 & ((c == List.SELECT_COMMAND) | (c == selectCommand))) {

 switch (mainMenu.getSelectedIndex()) {

 case 0: // JK Translate

 entryForm = new EntryForm();

 display.setCurrent(entryForm);

 break;

 87

 default:

 }

 } else if (c == backCommand) {

 if (display.getCurrent() == entryForm) {

 display.setCurrent(mainMenu);

 } else {

 exitMIDlet();

 }

 } else if (c == exitCommand) {

 exitMIDlet();

 } else {

 exitMIDlet();

 }

 }

 // The main menu

 class MainMenu extends List {

 MainMenu() {

 super("Mode Selection", Choice.IMPLICIT, modes, null);

 Ticker mainMenuTicker = new Ticker(

 "Select the mode of translation you wish to use.");

 setTicker(mainMenuTicker);

 addCommand(exitCommand);

 addCommand(selectCommand);

 setCommandListener(JKTranslation.this);

 }

 }

 // The text entry form

 class EntryForm extends TextBox {

 EntryForm() {

 super("Text Capture", "", 80, 0);

 Ticker entryFormTicker = new Ticker(

 "Enter the Japanese text you wish to be translated into Korean.");

 88

 setTicker(entryFormTicker);

 addCommand(exitCommand);

 addCommand(backCommand);

 addCommand(translateCommand);

 setCommandListener(JKTranslation.this);

 }

 }

 // A status for for displaying messages as the

 // data is sent

 class StatusForm extends Form implements Runnable,

 HttpConnectionHelper.Callback {

 StatusForm(String text) {

 super("Status");

 // Convert the string into a byte array.

 // Doing it this way ensures that the

 // characters retain their encoding.

 try {

 ByteArrayOutputStream bout = new ByteArrayOutputStream();

 DataOutputStream dout = new DataOutputStream(bout);

 dout.writeUTF(text);

 data = bout.toByteArray();

 dout.close();

 } catch (IOException e) {

 }

 }

 // Updates the display.

 void display(String text) {

 if (message == null) {

 message = new StringItem(null, text);

 append(message);

 89

 } else {

 message.setText(text);

 }

 }

 // Done.

 void done(String msg) {

 display(msg != null ? msg : "Done.");

 addCommand(okCommand);

 setCommandListener(JKTranslation.this);

 }

 // Callback for making the HTTP connection.

 public void prepareRequest(String originalURL, HttpConnection conn)

 throws IOException {

 conn.setRequestMethod(HttpConnection.POST);

 conn.setRequestProperty("User-Agent",

 "Profile/MIDP-1.0 Configuration/CLDC-1.1");

 conn.setRequestProperty("Content-Language", "en-US");

 conn.setRequestProperty("Accept", "application/octet-stream");

 conn.setRequestProperty("Connection", "close");

 conn.setRequestProperty("Content-Length", Integer

 .toString(data.length));

 OutputStream os = conn.openOutputStream();

 os.write(data);

 os.close();

 }

 // Do the connection on a separate thread to

 // keep the UI responsive

 public void run() {

 HttpConnection conn = null;

 display("Obtaining HttpConnection object...");

 90

 try {

 conn = HttpConnectionHelper.connect(url, this);

 display("Connecting to the server...");

 int rc = conn.getResponseCode();

 if (rc == HttpConnection.HTTP_OK) {

 StringBuffer text = new StringBuffer();

 // Here's where you read the data.

 // This case expects an integer

 // followed by zero or more

 // strings.

 try {

 DataInputStream din = new DataInputStream(conn

 .openInputStream());

 int n = din.readInt();

 while (n-- > 0) {

 text.append(din.readUTF());

 text.append('\n');

 }

 } catch (IOException e) {

 }

 done("Response is:\n" + text.toString());

 } else {

 done("Unexpected return code: " + rc);

 }

 } catch (IOException e) {

 done("Exception " + e + " trying to connect.");

 }

 }

 91

 // Starts the upload in the background

 void start() {

 display("Starting...");

 Thread t = new Thread(this);

 try {

 t.start();

 } catch (Exception e) {

 done("Exception " + e + " trying to start thread.");

 }

 }

 private StringItem message;

 private byte[] data;

 }

}

 92

8.3.2 HttpConnectionHelper Class
import java.io.*;

import javax.microedition.io.*;

 public class HttpConnectionHelper {

 public interface Callback {

 void prepareRequest(String originalURL,

 HttpConnection conn)

 throws IOException;

 }

 public static HttpConnection connect(String url)

 throws IOException {

 return connect(url, null);

 }

 public static HttpConnection connect(

 String url, Callback callback)

 throws IOException {

 HttpConnection conn = null;

 String originalURL = url;

 while(url != null){

 Connector.open(url);

 if(callback != null){

 callback.prepareRequest(originalURL,

 conn);

 }

 int rc = conn.getResponseCode();

 switch(rc){

 case HttpConnection.HTTP_MOVED_PERM:

 case HttpConnection.HTTP_MOVED_TEMP:

 case HttpConnection.HTTP_SEE_OTHER:

 93

 case HttpConnection.HTTP_TEMP_REDIRECT:

 url = conn.getHeaderField("Location");

 if(url != null && url.startsWith(

 "/*")){

 StringBuffer b = new StringBuffer();

 b.append("http://");

 b.append(conn.getHost());

 b.append(':');

 b.append(conn.getPort());

 b.append(url);

 url = b.toString();

 }

 conn.close();

 break;

 default:

 url = null;

 break;

 }

 }

 return conn;

 }

 }

